Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho f( x ) = ax3+bx2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c. Chứng minh rằng f (1); f(2) là bình phương của một số nguyên.
Đọc thêm
Toán lớp 7
Do b=3a+c
Ta có:f(1)=a+b+c+d=4a+2c+d
f(-2)=-8a+4b-2c+d=-8a+4.(3a+c)-2c+d=-8a+12a+4c-2c+d=4a+2c+d
=>f(1).f(-2)=(4a+2c+d)2
=>f(1).f(-2) ko âm
Do b=3a+c
ta sẽ có: f(1)=a+b+c+d=4a+2c+d
f(-2)=-8a+4b-2c+d=-8a+4.(3a+c)-2c+d=8a+12a+4c-2c+d=4a+2c+d
=>f(1).f(2)=(4a+2c+d)\(^2\)
=>f(1).f(2) không âm
chúc chị học tốt em mới lớp 6 nhưng có đi học thêm bài này cùng ác anh chị lớp 7 nên giúp chị ạ^^
Giải:
Thay \(b=3a+c\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=ax^3+\left(3a+c\right)x^2+cx+d\)
\(=ax^3+3ax^2+cx^2+cx+d\)
Từ đó ta có:
\(f\left(1\right)=a.1^3+3a.1^2+c.1^2+c.1+d\)
\(=a+3a+c+c+d=4a+2c+d\left(1\right)\)
Ta lại có:
\(f\left(-2\right)=a.\left(-2\right)^3+3a.\left(-2\right)^2+c.\left(-2\right)^2\) \(+c.\left(-2\right)+d\)
\(=-8a+12a+4c-2c+d=\) \(4a+2c+d\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(f\left(1\right)=f\left(-2\right)\left(=4a+2c+d\right)\) (Đpcm)
Thay b = 3a + c vào f(x) ta được:
f(x) = ax3 + (3a+c)x2 + cx + d
⇒ f(1) = a.13 + 3a + c.12+ c.1 + d
= a + 3a + c + c + d
= 4a + 2c + d
= 4a + 2c + d (1)
f(2) = a.23 + 3a + c.22 - c.2 + d
= 8a + 3a + 4c - 2c + d
= 4a + 2c + d (2)
Nhân vế cho vế của (1) và ( 2) ta được
F(1).F(2)=(4a+2c+d).(4a+3c+d)
=\(\left(4a+2c+d\right)^2\)
Vậy f(1).F(2) là số chính phương
Thay b = 3a + c vào f(x) = ax3 + bx2 + cx + d
Ta có: ax3 + (3a + c)x2 + cx + d = ax3 + 3ax2 + cx2 + cx + d
Lại có: f(1) = a . 13 + 3a . 12 + c . 12 + c . 1 + d = a + 3a + c + c + d = 4a + 2c + d (1)
và f(-2) = a . (-2)3 + 3a . (-2)2 + c. (-2)2 + c . (-2) + d = -8a + 12a + 4c - 2c + d = 4a + 2c + d (2)
Từ (1) và (2) => f(1) = f(-2) (đpcm)
Ta có :
\(f\left(x\right)=ax^3+bx^2+cx+d\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^3+b.1^2+c.1+d\\f\left(-2\right)=a.\left(-2\right)^3+b.\left(-2\right)^2+c.2+d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a+b+c+d\\f\left(2\right)=a.-8+b.4+c.2+d\end{cases}}\)
Do b = 3a = c
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=3a+3a+3a+d\\f\left(-2\right)=a.-8+3a.4+3a.2+d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=9a+d\\f\left(-2\right)=-8a+12a+6a+d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=9a+d\\f\left(-2\right)=10a+d\end{cases}}\)
Đến bước này , bạn tự làm tiếp nhé .
Chúc bạn học tốt !!!
f(1)=a+b+c+d=a+3a+c+d=4a+c+d
f(-2)=-8a+4b-2c+d=-8a-2c+4*(3a+c)+d=4a+c+d
=>f(1)=f(-2)