K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

(x+100)*(1/99+1/96+1/93+1/91)=0

suy ra x+100=0

suy ra x=-100

11 tháng 2 2020

\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)

\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)

\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{97}+\frac{x+100}{96}\)

\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)

\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)

Dễ thấy \(\left(\frac{1}{99}< \frac{1}{98}< \frac{1}{97}< \frac{1}{96}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)\ne0\)

\(\Rightarrow x+100=0\Rightarrow x=-100\)

Vậy x = -100

\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)

\(\Rightarrow\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)

\(\Rightarrow\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)

\(\Rightarrow\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)=0\)

Dễ thấy \(\left(\frac{1}{91}>\frac{1}{93}>\frac{1}{95}>\frac{1}{97}\right)\)nên \(\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)\ne0\)

\(\Rightarrow200-x=0\Rightarrow x=200\)

Vậy x = 200

b, \(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)

     \(\frac{x+200}{99}+\frac{x+200}{98}=\frac{x+200}{97}+\frac{x+200}{96}\)

   \(\frac{x+200}{99}+\frac{x+200}{98}-\frac{x+200}{97}-\frac{x+200}{96}=0\)

\(\left(x+200\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)

\(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\)

==> x+200=0

<=>x=-200

Vậy nghiệm của phương trình là x=-200

c,  \(\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)

      \(\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)

\(\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)

mà  \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)

==>200-x=0

<=>x=200

vậy nghiệm của pt là x=200

19 tháng 2 2017

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{k}{x\left(x+100\right)}\)

\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{k}{x\left(x+100\right)}\)

\(\frac{1}{x}-\frac{1}{x+100}=\frac{k}{x\left(x+100\right)}\)

\(\frac{x+100}{x\left(x+100\right)}-\frac{x}{x\left(x+100\right)}=\frac{k}{x\left(x+100\right)}\)

k = 100

19 tháng 2 2017

k=100

9 tháng 6 2018

=> ĐK:  \(x\ne\left\{0;-1;-2;...;-99;-100\right\}\)

Đây là dạng dãy số đặc biệt, bạn có thể giải như sau:

Ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{100}{101}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{100}{101}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{100}{101}\)

\(\Leftrightarrow\frac{x+100-x}{x.\left(x+100\right)}=\frac{100}{101}\)

\(\Leftrightarrow\frac{100}{x^2+100x}=\frac{100}{101}\)

\(\Leftrightarrow x^2+100x=101\)

\(\Leftrightarrow x^2+100x-101=0\)

\(\Leftrightarrow x^2+101x-x-101=0\)

\(\Leftrightarrow x\left(x+101\right)-\left(x+101\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+101\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+101=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(n\right)\\x=-101\left(n\right)\end{cases}}\)

Vậy: S={1;-101)

Bạn tham khảo tại link : https://olm.vn/hoi-dap/detail/205275532692.html

9 tháng 6 2018

\(\frac{\left(x+1\right)-x}{x\left(x+1\right)}+\frac{\left(x+2\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+...+\frac{\left(x+100\right)-\left(x+99\right)}{\left(x+99\right)\left(x+100\right)}=\frac{100}{101}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{100}{101}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{100}{101}\)
Tự giải nha

9 tháng 6 2018

1/x -1/x+100 = 100/101

25 tháng 12 2017

ai làm ơn trả lời hộ mình câu này với

25 tháng 12 2017

a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x=105\)
b) \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Leftrightarrow\left(\frac{29-x}{21}+1\right)+\left(\frac{27-x}{23}+1\right)+\left(\frac{25-x}{25}+1\right)+\left(\frac{23-x}{27}+1\right)+\left(\frac{21-x}{29}+1\right)=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Leftrightarrow x=50\)

4 tháng 4 2020

\(\frac{100}{\frac{6}{5}x}+\frac{100}{x}=\frac{11}{3}\)

ĐK: \(x\ne0\)

\(\Leftrightarrow100+\frac{100}{x}.\frac{6}{5}x=\frac{11}{3}.\frac{6}{5}x\)

\(\Leftrightarrow100+120=\frac{22}{5}x\Leftrightarrow\frac{22}{5}x=220\Leftrightarrow x=50\left(tm\right)\)