Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=9x3-1/3x+3x2-3x+1/3x2-1/9x3-3x2-9x+27+3x
= 9x3-1/9x3+3x2+1/3x2-3x2-1/3-3x-9x+3x+27
= 80/9x3+1/3x2-28/3x+27
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Rightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
tu xet bang
tớ có cách khác:))
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{20+xy}{4x}=\frac{1}{8}\)
\(\Rightarrow\frac{40+2xy}{8x}=\frac{x}{8x}\)
\(\Rightarrow40+2xy=x\)
\(\Rightarrow40=x\left(1-2y\right)\)
Cách này xem cho vui nha.dài hơn cách của Phương Uyên.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)
Do đó: x=5; y=5; z=17
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)( 1 )
\(\frac{y}{3}=\frac{5z}{9}\Rightarrow\frac{y}{15}=\frac{z}{9}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{9}=\frac{3x+2y-z}{18+30-9}=\frac{-78}{39}=-2\)
\(\Rightarrow x=-12;y=-30;z=-18\)
\(\frac{x}{2}\)= \(\frac{y}{5}\); \(\frac{y}{3}\)= \(\frac{5z}{9}\)và 3x+2y-z=-78
\(\Rightarrow\)\(\frac{x}{6}\)= \(\frac{y}{15}\); \(\frac{y}{15}\)\(\frac{5z}{45}\) và 3x+2y-z=-78
\(\Rightarrow\)\(\frac{x}{6}\)= \(\frac{y}{15}\)= \(\frac{5z}{45}\) và 3x+2y-z=-78
\(\Rightarrow\)\(\frac{3x}{18}\)= \(\frac{2y}{30}\)= \(\frac{z}{9}\) và 3x+2y-z=-78
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{18}\)= \(\frac{2y}{30}\)= \(\frac{z}{9}\)= \(\frac{3x+2y-z}{18+30-9}\)= \(\frac{-78}{39}\)= -2
Suy ra: \(\frac{x}{6}\)= -2 \(\Rightarrow\)x= 6.(-2)=-12
\(\frac{y}{15}\)= -2 \(\Rightarrow\)y= 15.(-2)=-30
\(\frac{z}{9}\)= -2 \(\Rightarrow\)z= 9.(-2)=-18
B = 5|1 - 4x| - 1
Ta có: 5|1 - 4x| \(\ge\)0\(\forall\)x
=> 5|1 - 4x| - 1 \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 1 - 4x = 0 <=> x = 1/4
vậy MinB = -1 tại x = 1/4
E = 5 - |2x - 1|
Ta có: |2x - 1| \(\ge\)0 \(\forall\)x
=> 5 - |2x - 1| \(\le\)5 \(\forall\)x
Dấu "=" xảy ra <=> 2x - 1 = 0 <=> x = 1/2
Vậy MaxE = 5 tại x = 1/2
P = \(\frac{1}{\left|x-2\right|+3}\)
Ta có: |x - 2| \(\ge\)0 \(\forall\)x
=> |x - 2| + 3 \(\ge\)3 \(\forall\)x
=> \(\frac{1}{\left|x-2\right|+3}\le\frac{1}{3}\forall x\)
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MaxP = 1/3 tại x = 2
Ta có \(\frac{x-3}{x+5}=\frac{5}{7}\)
=> 5( x + 5 ) = 7( x - 3 )
=> 5x + 25 = 7x - 21
=> 7x - 5x = 25 + 21
=> 2x = 46
=> x = 23