K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

\(P=\frac{\sqrt{x}}{\sqrt{x-1}}\)

\(P^2=\frac{x}{x-1}\)

\(P^2=\frac{x-1+1}{x-1}\)

\(P^2=1+\frac{1}{x-1}\)

Để P2 nguyên thì \(\frac{1}{x-1}\) nguyên

\(\Rightarrow x-1=1\left(because:x\ge0\right)\)

\(\Rightarrow x=1\)

Thay vào được \(P^2=\frac{1}{0}\left(VL\right)\)

Vậy ko có x thỏa mãn

3 tháng 8 2019

zZz Cool Kid zZz : đã có x nguyên chưa zậy?

21 tháng 1 2020

hình như bạn chép sai đề vì kết quả của vế trái mà tôi ra là: 2/căn bậc hai(3x +y) còn vế kia 2/căn x+căn y và mẫu của vế trái lại lớn hơn mẫu của vế phải và tử của 2 vế bằng nhau =>phân số vế trái bé hơn phân số của vế phải 

=>tôi không thể chứng minh được

28 tháng 3 2022

`Answer:`

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{2x}{9-x}\right):\left(\frac{\sqrt{x}-1}{x-3\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\left(ĐK:x>0;x\ne9;x\ne25\right)\)

\(=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{2x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{2}{\sqrt{x}}\right)\)

\(=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+2x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=-\frac{3\sqrt{x}-x+2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-1-2\sqrt{x}+6}\)

\(=-\frac{\sqrt{x}\left(3+\sqrt{x}\right)}{3+\sqrt{x}}.\frac{\sqrt{x}}{5-\sqrt{x}}\)

\(=-\sqrt{x}.\frac{\sqrt{x}}{5-\sqrt{x}}\)

\(=\frac{x}{\sqrt{x}-5}\)

24 tháng 6 2018

\(\left(\frac{\sqrt{x+10}}{\sqrt{x+5}}\right)^2=\frac{x+10}{x+5}=\frac{x+5+5}{x+5}=1+\frac{5}{x+5}\)

vì x>=0 \(\Rightarrow1+\frac{5}{x+5}< =1+\frac{5}{0+5}=1+1=2\Rightarrow\left(\frac{\sqrt{x+10}}{\sqrt{x+5}}\right)^2< =2\)

\(\Rightarrow\frac{\sqrt{x+10}}{\sqrt{x+5}}< =\sqrt{2}\)

dấu = xảy ra khi x=0

vậy max \(\frac{\sqrt{x+10}}{\sqrt{x+5}}\)là \(\sqrt{2}\)khi x=0

25 tháng 6 2017

\(\frac{\sqrt{x}+3}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\in Z\Rightarrow\frac{2}{\sqrt{x}+1}\in Z\)

giả sử \(\sqrt{x}\)là số vô tỉ=>\(\sqrt{x}+1\)là số vô tỉ 

=>\(\frac{2}{\sqrt{x}+1}\)là số vô tỉ(vô lí)

với \(\sqrt{x}\in Q\)=>\(\sqrt{x}\in Z\Rightarrow\sqrt{x}+1\in Z\)

mà \(\sqrt{x}+1\ge1\)

Vậy x=0;1 thì \(A\in Z\)

=>\(\sqrt{x}+1\in\left\{1;2\right\}\Rightarrow x\in\left\{0;1\right\}\)

25 tháng 6 2017

Đặt \(\sqrt{x}=t\)

 => t \(\ge\) 0

\(\Rightarrow\)Để A thuộc Z thì:

\(\frac{t+3}{t+1}\in Z\)

\(=>\left(\frac{t+3}{t+1}-1\right)\in Z\)

\(\frac{2}{t+1}\in Z\)

=> \(2⋮\left(t+1\right)\Rightarrow\left(t+1\right)\inƯ\left(2\right)\)

\(\Rightarrow\left(t+1\right)\in\left\{2;-2;1;-1\right\}\)

=> \(t\in\left\{1;-3;0;-2\right\}\)

Vì \(t\ge0\)nên chỉ có t = 1; t = 0 là thoả mãn điều kiện của t

Vì \(t=\sqrt{x}\)nên :

\(x\in\left\{1;0\right\}\)

Vậy,\(x\in\left\{1;0\right\}\)

25 tháng 6 2017

bạn ơi câu trc của bạn mình cũng trả lời r đó

đkxd: x khác 1

Đặt \(\sqrt{x}=t\)=> t \(\ge0\); t khác 1

Khi đó ta có:

\(B=\frac{3-2t}{t-1}\)

Để B thuộc Z thì:

\(B+2=\frac{3-2t+2t-2}{t-1}\in Z\)

\(\Rightarrow\frac{1}{t-1}\in Z\)

\(\Rightarrow\left(t-1\right)\in\left\{1;-1\right\}\)

\(t\in\left\{2;0\right\}\)

Vì cả 2 giá trị của t đều thoả mãn t \(\ge\)0, t khác 1 nên ta có 

\(x\in\left\{4;0\right\}\)