Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)
Tương tự \(1+y^2=\left(x+y\right)\left(y+z\right)\)
\(1+z^2=\left(x+z\right)\left(y+z\right)\)
Thay vào A ta được
\(P=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
=2(xy+xz+yz)=2
\(b,VT=VP\)
\(\Leftrightarrow\frac{x}{xy+yz+zx+x^2}+\frac{y}{xy+yz+zx+y^2}+\frac{z}{xy+yz+zx+z^2}\)
\(=\frac{2xyz}{\sqrt{\left(xy+yz+zx+x^2\right)\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}}\)
\(\Leftrightarrow\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{2xyz}{\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)\left(z+x\right)\left(y+z\right)}}\)
\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\Leftrightarrow xy+xz+xy+yz+xz+yz=2xyz\)
\(\Leftrightarrow2=2xyz\)
\(\Leftrightarrow xyz=1\)
Đù =)))
Ta có:
1+x2=xy+yz+xz+x2=(x+y)(x+z)
1+y2=xy+yz+xz+y2=(y+z)(x+y)
1+z2=xy+yz+zx+z2=(x+z)(y+z)
Thay vào A ta được:
\(A=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)\(+y\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(x+z\right)\left(y+z\right)}{\left(y+z\right)\left(x+y\right)}}\)\(+z\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\left(x+y\right)^2\)
\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(=xy+xz+xy+yz+xz+zy\)
\(=2\left(xy+yz+xz\right)\)
\(=2\)
Đây ms là chuẩn :)
\(x^2-x-1=0\)
<=> \(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}=0\)
<=> \(\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
<=> \(\left[{}\begin{matrix}x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\x-\frac{1}{2}=-\frac{\sqrt{5}}{2}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\frac{\sqrt{5}+1}{2}>0\\x=\frac{1-\sqrt{5}}{2}< 0\end{matrix}\right.\)
Do a là nghiệm nguyên âm của pt \(x^2-x-1=0\)
=> a= \(\frac{1-\sqrt{5}}{2}\)
<=> \(2-a=2-\frac{1-\sqrt{5}}{2}=\frac{4-1+\sqrt{5}}{2}=\frac{3+\sqrt{5}}{2}=\frac{6+2\sqrt{5}}{4}=\frac{5+2\sqrt{5}+1}{4}\)
<=> 2-a= \(\frac{\left(\sqrt{5}+1\right)^2}{4}>0\) => \(\sqrt{2-a}=\sqrt{\frac{\left(\sqrt{5}+1\right)^2}{4}}=\left|\frac{\sqrt{5}+1}{2}\right|=\frac{\sqrt{5}+1}{2}\) (1)
Có \(5+8a=5+8.\frac{1-\sqrt{5}}{2}=5+4\left(1-\sqrt{5}\right)=5+4-4\sqrt{5}=5-2.2\sqrt{5}+4=\left(\sqrt{5}-2\right)^2\)
<=> \(\sqrt[3]{5+8a}=\sqrt[3]{\left(\sqrt{5}-2\right)^2}\)(2)
Từ (1) ,(2)=> \(A=\frac{\sqrt{5}+1}{2}+\sqrt[3]{\left(\sqrt{5}-2\right)^2}\)( đến đây k biết đề có sai k ,nếu k sai thì giải nốt nha,chỉ bít làm đến đây thôi :))
@tth