Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Thay x=16 vào A ta có:
A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)
A=\(\frac{16+4+1}{4+2}\)
A=\(\frac{21}{6}=\frac{7}{2}\)
\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)
\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)
\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)
\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)
binh rồi căn thì cứ chuyển bỏ dấu âm đi nó tương tự dấu giá trị tuyệt đối thôi
a,\(\frac{x}{\sqrt{x}+1}=\frac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}\)
\(=\left(\sqrt{x}-1\right)+\frac{1}{\sqrt{x}-1}+2\ge2.\sqrt{\left(\sqrt{x}-1\right).\frac{1}{\sqrt{x}-1}+2}\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow\sqrt{x}-1=1\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\left(t/m\right)\)
Dmin = 4 <=> x=4
b,\(\frac{\sqrt{x-9}}{5x}\)
\(\sqrt{x-9}=\sqrt{\frac{\left(x-9\right).9}{9}}=\frac{1}{3}.\sqrt{\left(x-9\right).9}\le\frac{1}{3}.\frac{x-9+9}{2}=\frac{x}{2}\)
\(\Rightarrow D\le\frac{x}{\frac{6}{5x}}=\frac{x}{30x}=\frac{1}{30}\)
Dấu "=" xảy ra \(\Leftrightarrow x-9=9\Leftrightarrow x=18\)
Dmax=\(\frac{1}{30}\Leftrightarrow x=18\)
P/s : ko chắc lắm
\(a)\)\(P=\frac{x}{\sqrt{x}+1}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}-\frac{2\sqrt{x}+2}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(P=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}-2\ge2\sqrt{\left(\sqrt{x}+1\right).\frac{1}{\sqrt{x}+1}}-2=2-2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\sqrt{x}+1=\frac{1}{\sqrt{x}+1}\)\(\Leftrightarrow\)\(x=0\)
...
câu 1:
khi Oy nằm giữa Oz và Ox,Oy nằm trên nửa mặt phẳng bờ chứa tia Ox
câu 2 ko hiểu đề