Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2013.2014+2014.2015+2015.2016\right)\left(1+\frac{1}{3}-1\frac{1}{3}\right)\)
\(=\left(2013.2014+2014.2015+2015.2016\right)\left(\frac{4}{3}-\frac{4}{3}\right)\)
\(=\left(2013.2014+2014.2015+2015.2016\right).0\)
\(=0\)
a,\(\frac{2015.2016+2015-1}{2014+2015.2016}=\frac{2015.2016+2014}{2014+2015.2016}=1\)\(1\)
b,\(=1-\frac{1}{5}+\frac{1}{5}...-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2015}=1-\frac{1}{2015}=\frac{2014}{2015}\)
c,\(=\frac{12}{35}+\frac{12}{35}+\frac{12}{35}+\frac{12}{35}=\frac{12}{35}.4=\frac{48}{35}\)
Tử số = 2014x 2015 + 1014 = 2014 x 2015 + 2014 - 1000
Mẫu số = 2014 x 2016 -1000 = 2014 x ( 2015 +1) -1000 = 2014 x 2015 + 2014 -1000
Tử số / Mẫu số = 2014 x 2015 + 2014 - 1000 / 2014 x 2015 + 2014 -1000 =1
( Không viết được dạng phân số nên đành phải viết như thế kia nhé )
\(\frac{2012+2013.2015}{2014.2015+2016}=\frac{4056194}{4060226}\)
a. ta có (0.1+0.19)+(0.2+0.18)......+0.10
A=0.20+0.20++0.20+0.20+0.20+0.20+0.20+0.20+0.20+0.10
A=1.90
câu b mình pó tay
a ) \(A=0,1+0,2+...+0,19\)
\(A=\left(0,1+0,2+...+0,9\right)+\left(0,10+0,11+...+0,19\right)\)
\(A=0,1\times\left(1+2+...+9\right)+0,1\times\left(1+1,1+...+1,9\right)\)
\(A=0,1\times45+0,1\times14,5\)
\(A=0,1\times\left(45+14,5\right)\)
\(A=0,1\times59,5\)
\(A=5,95\)
b ) \(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{1}{2}\div1\frac{1}{2}+1\frac{1}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{1}{2}\div\frac{3}{2}+\frac{4}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{2}{6}+\frac{4}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\frac{8}{3}\)
Xét tử: \(2015+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)
\(=\left(1+1+...+1\right)+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)( trong ngoặc có 2015 số 1 )
\(=\left(1+\frac{2014}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{1}{2015}\right)+1\)
\(=\frac{2016}{2}+\frac{2016}{3}+\frac{2016}{4}+...+\frac{2016}{2015}+\frac{2016}{2016}\)
\(=2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
Ghép tử và mẫu \(\frac{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}=2016\)
Vậy \(A=2016\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
có ví dụ rồi sao không tự làm