Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{\left(\frac{101-1}{1}+1\right)\left(\frac{101+1}{2}\right)}{\left(\frac{101-1}{2}+1\right)\left(\frac{101+1}{2}\right)-\left(\frac{100-2}{2}+1\right)\left(\frac{100+2}{2}\right)}=\frac{101.51}{51.51-50.51}\frac{101.51}{51}=101\)
C = \(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(C=\frac{\left(101+1\right).101:2}{1+1+...+1+1}\)
\(C=\frac{5151}{51}\)
\(C=101\)
b) \(D=\frac{3737.43-4343.37}{2+4+6+...+100}\)
\(D=\frac{37.101.43-43.101.37}{2+4+6+...+100}\)
\(D=\frac{0}{2+4+6+...+100}\)
\(D=0\)
Câu a ở tử bạn tính tổng của tụi nó lại theo công thức . Mẫu bạn gộp như sau : (101-100)+(99-98)+...+(3-2)+1=...( dễ tính vì toàn là số 1)
Câu b ở tử:3737*43-4343*37=(37*101)*43-(43*101)*37. DỄ DÀNG NHẬN THẤY RẰNG TỪ BẰNG 0. VẬY KHỎI CẦN TÍNH MẪU CX BT ĐÁP ÁN LÀ 0
THANK YOU SO MUCH
Nếu bạn không hiểu thì kb với mk sau đó mk sẽ giải thích
\(B=\frac{3737.43-4343.37}{2+4+6+...+100}\)
=>\(B=\frac{37.101.43-4343.37}{2+4+6+...+100}\)
=>\(B=\frac{37.4343-4343.37}{2+4+6+...+100}\)
=>\(B=\frac{0}{2+4+6+...+100}\)
=>\(B=0\)
=> \(B=\frac{37.101.43-43.101.37}{2+4+6+...+100}=\frac{0}{2+4+6+...+100}=0\)
25/53=25*101/53*101=2525/5353
25/53=25*1001/53*10101=252525/535353
=)25/53=2525/5353=252525/535353
y b) tuong tu nhe
duyet nha
ta có :
1 đến 100 =
có 100 số hạng
tổng : ( 100 + 1 ) x 100 : 2 = 5050
công thức : ta lấy số lớn nhất trừ số bé nhất trong dãy số trong ngoặc chia số số hạng rồi chia 2
12 + 22 + 32 ........ + 102 =
12 = 1 x 1 = 1 62 = 6 x 6 = 36
22 = 2 x 2 = 4 72 = 7 x 7 = 49
32 = 3 x 3 = 9 .......
42 = 4 x 4 = 16 tổng dãy số là : 1 + 9 + 4 + 16 + 25 + 36 .... = 395
52 = 5 x 5 = 25
65 x 111 x 13 x 15 x 37 = 52056225
Đ/s : ta lấy 3 kết quả nhân với nhau rồi xem có thể xử dụng lũy thừa để rút gọn hay không
Tử số = 37.101.53 - 53.101.37 = 0
=> Phân số = 0
\(\frac{3737.53-5353.37}{1^2+2^2+...+100^2}\)
\(=\frac{37.101.53-53.101.37}{1^2+2^2+..+100^2}\)
\(=\frac{0}{1^2+2^2+...+100^2}\)
\(=0\)