K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

Ta đi so sánh \(\frac{2017.2018+1}{2017.2018}\)với\(\frac{2018.2019+1}{2018.2019}\)có :

\(\frac{2017.2018+1}{2017.2018}=\frac{2017.2018}{2017.2018}+\frac{1}{2017.2018}=1+\frac{1}{2017.2018}\left(\cdot\right)\)

\(\frac{2018.2019+1}{2018.2019}=\frac{2018.2019}{2018.2019}+\frac{1}{2018.2019}\left(\cdot\cdot\right)\)

\(\frac{1}{2017.2018}>\frac{1}{2018.2019}\left(\cdot\cdot\cdot\right)\)Từ \(\left(\cdot\right);\left(\cdot\cdot\right)\&\left(\cdot\cdot\cdot\right)\Rightarrow\frac{2017.2018+1}{2017.2018}>\frac{2018.2019+1}{2018.2019}\)

\(\Leftrightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}.\)

17 tháng 6 2019

#)Trả lời :

\(\frac{2017\times2018}{2017\times2018+1}=\frac{0}{1}=0\)

\(\frac{2018\times2019}{2018\times2019+1}=\frac{0}{1}=0\)

\(\Rightarrow\frac{2017\times2018}{2017\times2018+1}=\frac{2018\times2019}{2018\times2019+1}\)

24 tháng 7 2018

\(A=\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)

\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)

Có \(\frac{1}{2017.2018}>\frac{1}{2018.2019}\)

\(\Rightarrow A< B\)

24 tháng 7 2018

\(A=\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)

\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)

Do  \(\frac{1}{2017.2018}>\frac{1}{2018.2019}\)nên  \(1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)

Vậy  \(A< B\)

8 tháng 8 2017

\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)

\(=\frac{19}{37}+1-\frac{19}{37}\)
\(=\left(\frac{19}{37}-\frac{19}{37}\right)+1\)

\(=0+1=1\)

7 tháng 8 2018

help me

7 tháng 8 2018

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

5 tháng 9 2019

\(A=\frac{1+2018.2019}{2017.2019+2020}=\frac{1+2019+2017.2019}{2017.2019+2020}=\frac{2020+2017.2019}{2017.2019+2020}=1\)

5 tháng 9 2019

\(\frac{1+2018.2019}{2017.2019+2020}\)

\(=\frac{2018.2019-2019+2020}{2017.2019+2020}\)

\(=\frac{2019.\left(2018-1\right)+2020}{2017.2019+2020}\)

\(=\frac{2017.2019+2020}{2017.2019+2020}\)

\(=1\\ \)

5 tháng 9 2019

\(\frac{1+2018.2019}{2017.2019+2020}=\frac{1+2019+2017.2019}{2017.2019+2020}\)

\(=\frac{2020+2017.2019}{2017.2019+2020}=1\)

Vậy : \(\frac{1+2018.2019}{2017.2019+2020}=1\)