Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này lớp 8 học rồi nhé , bạn đặt đúng lớp ạ
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1< =>\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\)
\(< =>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=1\)
\(< =>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}-\frac{2}{bc}+\frac{1}{a^2}+1=1\)
\(< =>\left(\frac{1}{a^2}+\frac{1}{a^2}\right)+\left(\frac{2}{bc}-\frac{2}{bc}\right)+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ca}=1-1=0\)
\(< =>\frac{2}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ca}=0< =>\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{a}+\frac{1}{b}\right)^2=0\)
\(< =>\hept{\begin{cases}\frac{1}{a}+\frac{1}{c}=0\\\frac{1}{a}+\frac{1}{b}=0\end{cases}< =>\hept{\begin{cases}\frac{1}{c}=-\frac{1}{a}\\\frac{1}{b}=-\frac{1}{a}\end{cases}}< =>b=c=-a}\)(*)
Thế (*) và giả thiết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1< =>\frac{1}{a}+\frac{1}{-a}+\frac{1}{-a}=1\)
\(< =>\frac{1-1-1}{a}=1< =>-\frac{1}{a}=1< =>a=-1\)
Khi đó ta được \(b=c=-\left(-1\right)=1< =>\hept{\begin{cases}a=-1\\b=1\\c=1\end{cases}}\)
Nên \(P=\left(a-2b+4c\right)^{2019}=\left(-1-2+4\right)^{2019}=1^{2019}=1\)
Áp dụng : x + y + z = 0 suy ra x3 + y3 + z3 = 3xyz
1/a + 1/2b + 1/3c = 0 = >... rồi biến đổi nhé
Xét \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3+3x+3-6x+3x^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
Thay vào ta tính được:
\(A=\left[f\left(\frac{1}{2020}\right)+f\left(\frac{2019}{2020}\right)\right]+...+\left[f\left(\frac{1009}{2020}\right)+f\left(\frac{1011}{2020}\right)\right]+f\left(\frac{1010}{2020}\right)\)
\(A=1+...+1+f\left(\frac{1010}{2020}\right)\) (với 1009 số 1)
\(A=1009+f\left(\frac{1}{2}\right)=1009+\frac{\left(\frac{1}{2}\right)^3}{1-3\cdot\frac{1}{2}+3\cdot\left(\frac{1}{2}\right)^2}\)
\(A=1009+\frac{1}{2}=\frac{2019}{2}\)
Vậy \(A=\frac{2019}{2}\)
\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)
\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)
\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)
\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)
Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi