K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

b) D = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\)

= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)

= \(\frac{1}{2}-\frac{1}{2016}\)

22 tháng 8 2020

Bài c mk bí quá nên ko làm đc nhưng mong bn tick 2 bài dưới cho mk với nhé

CHÚC BẠN HỌC TỐT ^_^

10 tháng 9 2017

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

mình biết

\(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{2015.2016}\)

\(\Rightarrow\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{2015}-\frac{1}{2016}\)

ta rút gọn được

\(\Rightarrow\frac{1}{10}-\frac{1}{2016}\)

\(\Rightarrow\frac{1003}{10080}\)

26 tháng 12 2015

tham khảo câu hỏi tương tự nha bạn

30 tháng 8 2018

ta có: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Lại có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};\frac{1}{4^2}>\frac{1}{4.5};...;\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)

                                                                               \(=\frac{1}{2}-\frac{1}{101}\)

\(\Rightarrow1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>1-\left(\frac{1}{2}-\frac{1}{101}\right)=1-\frac{1}{2}+\frac{1}{101}\)

                                                                                                                                 \(=\frac{1}{2}+\frac{1}{101}\)

mà \(\frac{1}{2}=\frac{50}{100}>\frac{1}{100}\Rightarrow\frac{1}{2}+\frac{1}{101}>\frac{1}{100}\)

=> đ p c m