K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{1}{x\left(x+1\right):2}=\frac{2018}{2019}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{x\left(x+1\right)}\right)\)\(=\frac{2018}{2019}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2018}{2019}:2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2018}{4038}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2018}{4038}=\frac{1}{4038}\)

\(\Rightarrow x+1=4038\)

\(\Rightarrow x=4037\)

14 tháng 10 2016

\(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2011}:2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2011}\)

\(\Leftrightarrow x+1=2011\)

\(\Leftrightarrow x=2010\)

14 tháng 10 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{1}{x\times\left(x+1\right)\div2}=\frac{2009}{2011}\)

\(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.......+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(1-\frac{2}{x+1}=\frac{2009}{2011}\)

\(\frac{2}{x+1}=1-\frac{2009}{2011}\)

\(\frac{2}{x+1}=\frac{2}{2011}\)

\(x+1=2011\)

\(x=2011-1\)

\(\Rightarrow x=2010\)

 

7 tháng 8 2018

help me

7 tháng 8 2018

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

16 tháng 9 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left[x+1\right]}=\frac{2017}{2019}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left[x+1\right]}=\frac{2017}{2019}\)

\(\Rightarrow2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left[x+1\right]}\right]=\frac{2017}{2019}\)

\(\Rightarrow2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{2017}{2019}\)

\(\Rightarrow2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{2017}{2019}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{\frac{2017}{2019}}{2}=\frac{2017}{4038}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4038}=\frac{1}{2019}\)

=> x + 1 = 2019 <=> x = 2018

\(\Leftrightarrow\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{x\left(x+1\right):2}=\dfrac{1991}{1993}\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1991}{1993}\)

\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{1991}{1993}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1991}{3986}\)

=>1/x+1=1/1993

=>x+1=1993

hay x=1992

 

Tìm x :

x - 0,27 = \(\frac{73}{100}\)

x           = \(\frac{73}{100}+0,27\)

x           = 1

Cậu P khó quá mik chưa nghĩ ra cách tính nhanh nhất !

Cậu tự giải nhé !

Hok tốt

12 tháng 5 2017

2107 hoặc 1 đáp án khác

19 tháng 3 2018

bang 2017

3 tháng 8 2018

\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

3 tháng 8 2018

a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Leftrightarrow x=308-3\)

\(\Leftrightarrow x=305\)

Vậy \(x=305\)

22 tháng 3 2018

Bạn Kiên giải đúng nhưng chưa rõ nên mình giải lại.

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=\frac{202}{201}\)

\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{202}{201}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{202}{201}:2=\frac{202}{402}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{202}{402}=-\frac{1}{402}=\frac{-1}{402}=\frac{1}{-402}\)

\(\Rightarrow\frac{1}{x+1}=\hept{\begin{cases}\frac{-1}{402}\\\frac{1}{-402}\end{cases}}\Rightarrow x+1=\hept{\begin{cases}402\\-402\end{cases}}\Rightarrow\hept{\begin{cases}x=402-1\\x=\left(-402\right)-1\end{cases}}\Rightarrow x=\hept{\begin{cases}401\\-403\end{cases}}\)

22 tháng 3 2018

\(\Rightarrow A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{202}{201}\)\(\Rightarrow A=2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{202}{201}\)

\(\Rightarrow A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{202}{201}\)

\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{202}{201}\)

\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{202}{201}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{202}{402}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{202}{402}=\frac{-1}{402}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{-402}\)

\(\Rightarrow x+1=-402\)

\(\Rightarrow x=-403\)

18 tháng 4 2019

a)

\(\frac{11x-1}{4}=\frac{10}{4}\)

⇒ 11x - 1 = 10

11x = 10 + 1 = 11

x = 11 : 11 = 1

b)

\(\left[{}\begin{matrix}3x-6=0\\\frac{x}{9}-\frac{1}{3}=0\end{matrix}\right.\)\(\left[{}\begin{matrix}3x=0+6\\\frac{x}{9}=0+\frac{1}{3}\end{matrix}\right.\)\(\left[{}\begin{matrix}3x=6\\\frac{x}{9}=\frac{1}{3}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=6:3\\\frac{x}{9}=\frac{3}{9}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy x = 2 hoặc x = 3

c)

\(M=c\left(\frac{5}{7}+\frac{7}{14}-\frac{17}{14}\right)\)

\(M=c\left(\frac{10}{14}+\frac{7}{14}-\frac{17}{14}\right)\)

\(M=\left(\frac{2018}{2019}-\frac{2019}{2020}\right).0\)

M = 0

d)

\(N=\frac{-7}{13}+2-\frac{19}{13}+\frac{2020}{2018}.\frac{2018}{202}\)

\(N=\left(\frac{-7}{13}-\frac{19}{13}\right)+2+10\)

N = \(-2+2+10\)

N = 10