Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
th1\(\hept{\begin{cases}5x-\frac{1}{2}>0\\1,25-3x>0\end{cases}}=>\hept{\begin{cases}x>\frac{1}{10}\\x< \frac{5}{12}\end{cases}}\)=>1/10<x<5/12
còn th2 vô lí
\(\frac{x+\frac{3}{2}}{x-\frac{2}{3}}\)VÌ \(x-\frac{2}{3}< x+\frac{3}{2}\)=> \(x-\frac{2}{3}< 0;x+\frac{3}{2}>0\)
=> \(\frac{-3}{2}< x< \frac{2}{3}\)=> \(x=\left\{-\frac{8}{6};-\frac{7}{6};....;\frac{3}{6}\right\}\)
HỌC TỐT NHA
Đặt S = \(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\)
=> 24S = 16S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}\)
=> 16S - S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}-\left(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\right)\)
=> 15S = \(2^3-\frac{1}{2^{101}}\)
=> S = \(\frac{2^3-\frac{1}{2^{101}}}{15}\)
Khi đó A = \(\frac{2^3-\frac{1}{2^{101}}}{15}:\left(2^3-\frac{1}{2^{101}}\right)=\frac{1}{15}\)
\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Rightarrow-\frac{13}{3}.\left(\frac{3}{6}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{4}{12}-\frac{6}{12}-\frac{9}{12}\right)\)
\(\Rightarrow-\frac{13}{3}.\frac{2}{6}\le x\le-\frac{2}{3}.\frac{-11}{12}\)
\(\Rightarrow\frac{-13}{9}\le x\le\frac{11}{18}\)
\(\Rightarrow\frac{-26}{18}\le x\le\frac{11}{18}\)
=> -1,44444444444........... ≤ x ≤ 0,6111111111...........
Mà x ∈ Z
=> x ∈ { -1 ; 0 }
\(\frac{1}{1}\)- \(\frac{2}{3}\)=\(\frac{1}{3}\)
1-2/3 =
\(\frac{1}{3}\)
.....