Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6F=1.3(5-1)+3.5(7-1)+5.7(9-3)+...99.101(103-97)
6F=1.3+1.3.5-1.3.5+3.5.7-3.5.7+.....-97.99.101+99.101.103
6F=3+99.101.103
6F=3+1029897
6F=1029900
F =1029900:6
F=171650
B : 7/2 =2/1.3+2/3.5+...+2/99.101
B:7/2=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
B:7/2=1-1/101=100/101
B=100/101*7/2=700/202=350/101
B=7/2(2/1.3+2/3.5+ ...+2/99.101)
B=7/2(1-1/3+1/3-1/5+...+1/99-1/101)
B=7/2(1-1/101)=7/2.100/101=350/101
k nha bạn
\(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{1}{55}\)
\(B=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}\)
\(B=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{10.11}\)
\(B=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(B=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)
3) Ta có : \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
4)
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\frac{100}{101}\)
A = \(\frac{50}{101}\)
2, đặt tên biểu thức trên là A. Ta có :
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
1) \(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=1-\frac{1}{5}\)
\(=\frac{4}{5}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(=1-\frac{1}{51}=\frac{50}{51}\)
2/1.3 + 2/3.5 + 2/5.7 + ... + 2/49 . 51
= 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/49 . 51
= 1 + 51 = 52