Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số táo ; cam và nho lần lượt là a ; b ; c ( quả ) ( a , b , c ∈ N* ) và lần lượt tỉ lệ với 4 ; 7 ; 9
Theo bài ra , ta có :
5a - b - c = 16
\(\frac{a}{4}=\frac{b}{7}=\frac{c}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{4}=\frac{b}{7}=\frac{c}{9}=\frac{5a}{20}=\frac{5a-b-c}{20-7-9}=\frac{16}{4}=4\)
\(\Rightarrow\hept{\begin{cases}a=4.4=16\\b=4.7=28\\c=4.9=36\end{cases}}\)
Giải : Gọi giá tiền của nho, táo và mận lần lượt là x,y với z (đơn vị : đồng; điều kiện : x,y,z >0).
- Vì số tiền đó mua được 3 kg nho hay 4 kg táo hoặc 5 kg mận.
\(\Rightarrow\)\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}.\)
- Vì 3kg táo đắt hơn 2kg mận là 210000 đồng \(\Rightarrow\)3y - 2z = 210000.
- Áp dụng tính chất của DTSBN, ta có :
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\Rightarrow\frac{3y-2z}{3.15-2.12}=\frac{210000}{21}=1000.\)
\(\Rightarrow\frac{x}{20}=1000\Rightarrow x=20.1000=20000.\)
\(\Rightarrow\frac{y}{15}=1000\Rightarrow y=15.1000=15000.\)
\(\Rightarrow\frac{z}{12}=1000\Rightarrow z=12.1000=12000.\)
\(\Rightarrow\)Vậy số tiền của mỗi loại : nho, táo và mận lần lượt là 20000, 15000 và 12000 đồng.