Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x^2\left(4-3x\right)=\dfrac{4}{9}.\dfrac{3}{2}x.\dfrac{3}{2}x\left(4-3x\right)\)
\(Q\le\dfrac{1}{27}.\dfrac{4}{9}.\left(\dfrac{3x}{2}+\dfrac{3x}{2}+4-3x\right)^3=\dfrac{256}{243}\)
\(Q_{maxx}=\dfrac{256}{243}\) khi \(\dfrac{3x}{2}=4-3x\Leftrightarrow x=\dfrac{8}{9}\)
\(A=27.\frac{x}{3}.\frac{x}{3}.\frac{x}{3}\left(a-x\right)\le\frac{27}{256}\left(\frac{x}{3}+\frac{x}{3}+\frac{x}{3}+a-x\right)^4=\frac{27a^4}{256}\)
\(\Rightarrow A_{max}=\frac{27a^4}{256}\) khi \(a-x=\frac{x}{3}\Rightarrow x=\frac{3a}{4}\)
\(c,P=\dfrac{x^2-x^2+8xy-16y^2}{x^2+4y^2}=\dfrac{8\left(\dfrac{x}{y}\right)-16}{\left(\dfrac{x}{y}\right)^2+4}\)
Đặt \(\dfrac{x}{y}=t\)
\(\Leftrightarrow P=\dfrac{8t-16}{t^2+4}\Leftrightarrow Pt^2+4P=8t-16\\ \Leftrightarrow Pt^2-8t+4P+16=0\)
Với \(P=0\Leftrightarrow t=2\)
Với \(P\ne0\Leftrightarrow\Delta'=16-P\left(4P+16\right)\ge0\)
\(\Leftrightarrow-P^2-4P+4\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)
Vậy \(P_{max}=-2+2\sqrt{2}\Leftrightarrow t=\dfrac{4}{P}=\dfrac{4}{-2+2\sqrt{2}}=2+\sqrt{2}\)
\(\Leftrightarrow\dfrac{x}{y}=2+2\sqrt{2}\)
A=(6-2x)(12-3y)(2x+3y)/6
<=(6-2x+12-3y+2x+3y)3/(6.27)
=183/(6.27)=36
Dễ dàng nhận ra \(A\ge0\)
\(A^2=x+3-x+2\sqrt{x\left(3-x\right)}=3+2\sqrt{x\left(3-x\right)}\ge3\)
\(\Rightarrow A\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Ai trả lời giùm em với