Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2+20x+*
=> x2 +2 x 5x2+52
= (x+5)2
b) 16x2+24xy+*
=> (4x)2+2 x 4x x 3+32
= (4x + 3)2
c) y2 -*+49
=> y2 - 2y72+72
= (y-7)2
d) * - 42xy + 49y2
= (3x)2 + 2 x 7y3x + (7y)2
= (3x+7y)2
2(x - 1)2 - 4(3 + x2) + 2x(x - 5)
= 2(x2 - 2x + 1) - 12 - 4x2 + 2x2 - 10x
= 2x2 - 4x + 2 - 12 - 4x2 + 2x2 - 10x
= - 14x - 10
a ) 2 ( x - 1 )2 - 4 ( 3 + x2 ) + 2x ( x - 5 )
=2(x2-2x+1)-4x2-12+2x2-10x
=2x2-4x+2-4x2-12+2x2-10x
=-14x-10
a, x^2+20x+100
b, y^2-14y+49
c, 16x^2+24xy+9y^2
d, 9-42xy+49y^2
( 3x+2). (3x-2)+(x-3)2-10x
=9x2-4+x2-6x+9-10x
=9x2-4+x2-6x+9
=10x-16x+5
(2x+y)2+ (x-2y)2-5. (x+y).(x-y)
=4x2+4xy+y2+x2-4xy+4y2-5.(x2-y2)
=4x2+4xy+y2+x2-4xy+4y2-5x2+5y2
=10y2
(3x-5)2- x.(3x-5)
=9x2-30x+25-3x2+15
=6x2-30x+40
a ) ( 2x + 1 )2 - 4 ( x + 2 )2 = 9
4x2 + 4x + 1 - 4 ( x2 +4x + 4 ) = 9
4x2 + 4x + 1 - 4x2 -16x -16 = 9
-12x - 15 = 9
-12x = 24
x = -2
b) 3 ( x - 1 )2 - 3x ( x - 5 ) = 1
3 ( x2 - 2x + 1 ) - 3x2 + 15x = 1
3x2 - 6x + 3 - 3x2 + 15x = 1
9x + 3 = 1
9x = -2
x = \(\frac{-2}{9}\)
b: \(\Leftrightarrow2\left(x^2-2x+1\right)-3x^2+5x-1=0\)
\(\Leftrightarrow2x^2-4x+2-3x^2+5x-1=0\)
\(\Leftrightarrow-x^2+x+1=0\)
\(\Leftrightarrow x^2-x-1=0\)
\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-1\right)=5\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{5}}{2}\\x_2=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)
c: \(\Leftrightarrow x^2+6x+9-1-\left(x^2+8x-4x-32\right)=0\)
\(\Leftrightarrow x^2+6x+8-x^2-4x+32=0\)
=>2x+40=0
hay x=-20
d: \(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7\left(x^2-9\right)=36\)
\(\Leftrightarrow7x^2+8x+13-7x^2+63=36\)
=>8x+76=36
hay x=-5
1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) 16x2 + * .24xy + x
b) * - 42xy + 49y2
c) 25x2 + * + 81
d) 64x2 - * +9
2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương
a) x2 + 10x + 26 + y2 + 2y
b) z2 - 6z + 5 - t2 - 4t
c) x2 - 2xy + 2y2 + 2y + 1
d) ( x + y + 4 )( x + y - 4 )
e) ( x + y - 6 )
Bài 1: Đề như đã sửa thì cách giải như sau:
Trong Tam giác ABC
Có AM/AB = AN/AC
Suy ra: MN // BC .
Trong tam giác ABI
có
MK // BI do K thuộc MN
Do đó : MK/BI =AM/AB (1)
Tương tự trong tam giác AIC
Có NK// IC nên NK/IC = AN/AC (2)
Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB
Lại có IC = IB ( t/c trung tuyến)
nên NK = MK (ĐPCM)
Bài 2:
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a)
Từ A kẻ đường cao AH ( H thuộc BC).
b) Do tam giác ABC vuông tại A áp dụng pitago ta có
BC=căn(AB mũ 2 + AC mũ 2)= 20cm
d) Có S(ABC)= AB*AC/2= AH*BC/2
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm
c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức:
BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45)
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2)
Trừ vế với vế có:
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45)
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD.
400-40*DC= -112+................
Suy 128- 10*DC= Căn(2) * AD (3)
Thay (3) v ào (2): rính được DC = 80/7 cm;
BD= BC - DC= 60/7 cm;
a) Ta có S(ABD)=AH*BD/2
S(ADC)=AH*DC/2
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;
a) x2 + 20x + *
= x2 + 2.x.10 + 102
= x2 + 20x + 100
b) 16x2 + 24xy +*
= 16x2 +2.x.12y + (12y)2
= 16x2 +24xy + 144y2
c) y2 - * + 49
= y2 - * +72
= y2 - 2.y.7 + 49
= y2 - 14y + 49
d) * - 42xy + 49y2
= * - 42xy + (7y)2
= * - 2.3x.7y + (7y)2
= (3x)2 - 42xy + (7y)2
= 9x2 - 42xy + 49y2