Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Tra bảng: √5,4 ≈ 2,324.
Dùng máy tính: √5,4 ≈ 2,32379008
Ta thấy máy tính bỏ túi cho kết quả chính xác hơn.
Tương tự:
- Tra bảng: √7,2 ≈ 2,683
Dùng máy tính: √7,2 ≈ 2,683281573
- Tra bảng: √9,5 ≈ 3,082
Dùng máy tính: √9,5 ≈ 3,082207001
- Tra bảng: √31 ≈ 5,568
Dùng máy tính: √31 ≈ 5,567764363
- Tra bảng: √68 ≈ 8,246
Dùng máy tính: √68 ≈ 8,246211251
- Tra bảng: √5,4 ≈ 2,324.
Dùng máy tính: √5,4 ≈ 2,32379008
Ta thấy máy tính bỏ túi cho kết quả chính xác hơn.
Tương tự:
- Tra bảng: √7,2 ≈ 2,683
Dùng máy tính: √7,2 ≈ 2,683281573
- Tra bảng: √9,5 ≈ 3,082
Dùng máy tính: √9,5 ≈ 3,082207001
- Tra bảng: √31 ≈ 5,568
Dùng máy tính: √31 ≈ 5,567764363
- Tra bảng: √68 ≈ 8,246
Dùng máy tính: √68 ≈ 8,246211251
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005
được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)
\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
a)2=1+1
Có:12<\(\sqrt{2}^{^{ }2}\)
=> 1<\(\sqrt{2}\)
=>1+1<\(\sqrt{2}+1\)
=>2<\(\sqrt{2}+1\)
c) 10=2.5
Có;\(5=\)\(\sqrt{25}< \sqrt{31}\)
=>\(\sqrt{31}>\sqrt{25}\)
=>\(2.\sqrt{31}>2.\sqrt{25}\)
=>\(2.\sqrt{31}>10\)
b) 1=2-1
Có: \(2=\sqrt{4}>\sqrt{3}\)
=>\(\sqrt{4}-1>\sqrt{3}-1\)
=>\(1>\sqrt{3}-1\)
d) -12=-3.4
Có:\(4=\sqrt{16}>\sqrt{11}\)
=>\(\sqrt{11}< \sqrt{16}\)
=>\(-3.\sqrt{11}>-3.\sqrt{16}\)
=>\(-3.\sqrt{11}>-12\)
a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)
Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)
Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)
b) Ta có :
\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)
Từ đó suy ra \(33< 3\sqrt[3]{1333}\)
a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\)
=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)
b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)
\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)
=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)
c/ \(16=\sqrt{16^2}\)
\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)
=> \(16>\sqrt{15}.\sqrt{17}\)
d/\(8^2=64=32+32=32+2\sqrt{256}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)
=> \(8>\sqrt{15}+\sqrt{17}\)
Đặt A = \(\sqrt{ }\)2003 + \(\sqrt{ }\)2005 ; B = 2\(\sqrt{ }\)2004
A² = 2003 + 2005 + 2\(\sqrt{ }\)(2003.2005)
= 4008 + 2\(\sqrt{ }\)[(2004-1)(2004+1)]
= 4008 + 2\(\sqrt{ }\)(2004² - 1) < 2.2004 + 2\(\sqrt{ }\)(2004²) = 4.2004 = B²
\(\Rightarrow\) A < B
a, \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\Rightarrow1+1< \sqrt{2}+1\Rightarrow2< \sqrt{2}+1\)
c, \(4>3=>\sqrt{4}>\sqrt{3}=>\sqrt{4}-1>\sqrt{3}-1\Rightarrow1>\sqrt{3}-1\)
d, \(16>11=>\sqrt{16}>\sqrt{11}\Rightarrow4>\sqrt{11}=>4.\left(-3\right)< \sqrt{11}.\left(-3\right)\)
\(=>-12< -3.\sqrt{11}\)