K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

- Tra bảng: √5,4 ≈ 2,324.

Dùng máy tính: √5,4 ≈ 2,32379008

Ta thấy máy tính bỏ túi cho kết quả chính xác hơn.

Tương tự:

- Tra bảng: √7,2 ≈ 2,683

Dùng máy tính: √7,2 ≈ 2,683281573

- Tra bảng: √9,5 ≈ 3,082

Dùng máy tính: √9,5 ≈ 3,082207001

- Tra bảng: √31 ≈ 5,568

Dùng máy tính: √31 ≈ 5,567764363

- Tra bảng: √68 ≈ 8,246

Dùng máy tính: √68 ≈ 8,246211251

14 tháng 2 2017

- Tra bảng: √5,4 ≈ 2,324.

Dùng máy tính: √5,4 ≈ 2,32379008

Ta thấy máy tính bỏ túi cho kết quả chính xác hơn.

Tương tự:

- Tra bảng: √7,2 ≈ 2,683

Dùng máy tính: √7,2 ≈ 2,683281573

- Tra bảng: √9,5 ≈ 3,082

Dùng máy tính: √9,5 ≈ 3,082207001

- Tra bảng: √31 ≈ 5,568

Dùng máy tính: √31 ≈ 5,567764363

- Tra bảng: √68 ≈ 8,246

Dùng máy tính: √68 ≈ 8,246211251

14 tháng 8 2016

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005

được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)

\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

22 tháng 5 2017

a)2=1+1

Có:12<\(\sqrt{2}^{^{ }2}\)

=> 1<\(\sqrt{2}\)

=>1+1<\(\sqrt{2}+1\)

=>2<\(\sqrt{2}+1\)

c) 10=2.5

Có;\(5=\)\(\sqrt{25}< \sqrt{31}\)

=>\(\sqrt{31}>\sqrt{25}\)

=>\(2.\sqrt{31}>2.\sqrt{25}\)

=>\(2.\sqrt{31}>10\)

b) 1=2-1

Có: \(2=\sqrt{4}>\sqrt{3}\)

=>\(\sqrt{4}-1>\sqrt{3}-1\)

=>\(1>\sqrt{3}-1\)

d) -12=-3.4

Có:\(4=\sqrt{16}>\sqrt{11}\)

=>\(\sqrt{11}< \sqrt{16}\)

=>\(-3.\sqrt{11}>-3.\sqrt{16}\)

=>\(-3.\sqrt{11}>-12\)

27 tháng 5 2017

a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)

Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)

Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)

b) Ta có :

\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)

Từ đó suy ra \(33< 3\sqrt[3]{1333}\)

14 tháng 8 2016

a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)

\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)

Vì \(\sqrt{24}< \sqrt{25}\)

=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)

b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)

\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)

=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)

c/ \(16=\sqrt{16^2}\)

\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)

=> \(16>\sqrt{15}.\sqrt{17}\)

d/\(8^2=64=32+32=32+2\sqrt{256}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)

=> \(8>\sqrt{15}+\sqrt{17}\)

 

 

 

14 tháng 8 2016

khó hiểu quá bn ơi

23 tháng 4 2017

Đặt A = \(\sqrt{ }\)2003 + \(\sqrt{ }\)2005 ; B = 2\(\sqrt{ }\)2004
A² = 2003 + 2005 + 2\(\sqrt{ }\)(2003.2005)
= 4008 + 2\(\sqrt{ }\)[(2004-1)(2004+1)]
= 4008 + 2\(\sqrt{ }\)(2004² - 1) < 2.2004 + 2\(\sqrt{ }\)(2004²) = 4.2004 = B²
\(\Rightarrow\) A < B

23 tháng 4 2017

Ta có: \(2\sqrt{2003.2005}=2\sqrt{2004^2-1}< 2\sqrt{2004^2}\)

\(\Rightarrow\) 2003 + \(2\sqrt{2003.2005}+2005\) < 2003 + 4008 + 2005

hay \(\left(\sqrt{2003}+\sqrt{2005}\right)^2< 8016\)

\(\Rightarrow\) \(\sqrt{2003}+\sqrt{2005}\) < 2 \(\sqrt{2004}\)

12 tháng 8 2016

a,  \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\Rightarrow1+1< \sqrt{2}+1\Rightarrow2< \sqrt{2}+1\)

c, \(4>3=>\sqrt{4}>\sqrt{3}=>\sqrt{4}-1>\sqrt{3}-1\Rightarrow1>\sqrt{3}-1\)

d, \(16>11=>\sqrt{16}>\sqrt{11}\Rightarrow4>\sqrt{11}=>4.\left(-3\right)< \sqrt{11}.\left(-3\right)\)

\(=>-12< -3.\sqrt{11}\)