Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xem lại thiếu cái đk gì đó
b) thích chọn số nào tùy
\(\frac{1}{2}=\frac{2}{4}< \frac{3}{4}< \frac{4}{4}< \frac{5}{4}< \frac{6}{4}< \frac{7}{4}< \frac{8}{4}< \frac{9}{4}< \frac{10}{4}=\frac{5}{2}\)
Ta có \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{am}{xm}=\frac{bn}{yn}=\frac{cp}{zp}=\frac{am-bn+cp}{xm-yn+zp}\) (đpcm)
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\) (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)
\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
=> đpcm
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)
⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+��� (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��
=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)
=> đpcm
\(\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3\left(x+z\right)}{30}\)
= \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)=\(\frac{x+z-y-z}{10-6}=\frac{x-y}{4}\)
\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)=\(\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)
---> dp cm
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}.\)
\(\Rightarrow\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+11+y+12+z+13}{13+14+15}=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{42}\)
\(=\frac{6+36}{42}=\frac{42}{42}=1\) ( Áp dụng tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}\frac{x+11}{13}=1\\\frac{y+12}{14}=1\\\frac{z+13}{15}=1\end{cases}}\Rightarrow\hept{\begin{cases}x+11=13\\y+12=14\\z+13=15\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=2\\z=2\end{cases}}\)
Vậy \(x=y=z=2\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+11+y+12+z+13}{13+14+15}\)
\(=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{13+14+15}=\frac{16+36}{42}=\frac{42}{42}=1\)
\(\Rightarrow\frac{x+11}{13}=1\Rightarrow x+11=13\Rightarrow x=13-11=2\)
\(\Rightarrow\frac{y+12}{14}=1\Rightarrow y+12=14\Rightarrow y=14-12=2\)
\(\Rightarrow\frac{z+13}{15}=1\Rightarrow z+13=15\Rightarrow z=15-13=2\)
Vậy \(x=y=z=2\)
bạn ơi đổi nền thế nào