Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)
c)
\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)
d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)
f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)
g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)
\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)
Theo bài ra , ta có :
\(P=\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)ĐKXĐ \(x\ne\pm y\)
\(\Leftrightarrow P=\left(\dfrac{x^2}{\left(x-y\right)\left(x+y\right)}+\dfrac{y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)
\(\Leftrightarrow P=\left(\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)
\(\Leftrightarrow P=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\times\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(\Leftrightarrow P=\dfrac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)\(\Leftrightarrow P=\dfrac{\left(x^2\right)^2-\left(y^2\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\)(1)
Ta có : \(x+y=5\Rightarrow\left(x+y\right)^2=25\Rightarrow x^2+y^2=25-2xy=25--1=26\)(Vì xy = -1/2)
Thay x2 + y2 = 26 vào (1) ta đk : P = 26
Vậy P = 26 khi x + y = 5 và xy = -1/2
\(P=\left(\dfrac{x^2+y\left(x+y\right)}{\left(x^2-y^2\right)}\right).\left(\dfrac{x^4\left(x-y\right)-y^4\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right)\\ \)
\(P=\left(\dfrac{x^2+xy+y^2}{\left(x^2-y^2\right)}\right).\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x^2+xy+y^2\right)}\)
\(P=x^2+y^2=\left(x+y\right)^2-2xy=25-2\left(-\dfrac{1}{2}\right)=26\)
a/ \(B=\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\left(\dfrac{x+y}{x^2+xy+y^2}+\dfrac{1}{x-y}\right)\)
\(=\dfrac{x^3-y^3}{xy}\cdot\dfrac{\left(x+y\right)\left(x-y\right)+x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^3-y^3}{xy}\cdot\dfrac{x^2-y^2+x^2+xy+y^2}{x^3-y^3}\)
\(=\dfrac{2x^2+xy}{xy}=\dfrac{x\left(2x+y\right)}{xy}=\dfrac{2x+y}{y}\)
b/ Khi x = -1/2 và y = 3 ta có:
\(B=\dfrac{2\cdot\left(-\dfrac{1}{2}\right)+3}{3}=\dfrac{-1+3}{3}=\dfrac{2}{3}\)