Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M
a)Gọi M là trung điểm cạnh huyền BC, Góc B=30 độ => Góc C=60 độ
Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
=> Tam giác AMC cân tại A
Mà góc C=60 độ => tâm giác AMC đều => AC=MC=1/2.BC => Cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền
b)Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
Mà AC=BC => Tam giác AMC đều => Góc C=60 độ => Góc A=30 độ =>góc đối diện với cạnh bằng 1/2 cạnh huyền bằng 30 độ
Chứng minh:
Ta có: ^C= 30° => ^B= 60°
Trên cạnh BC lấy điểm M sao cho AB = BM.
=> ∆ABM cân tại B mà ^B= 60°
=>∆ABM đều
=> AB= BM= AM (1)
và ^BAM= ^B= ^BMA= 60°
∆ABC vuông tại A
=> ^B + ^C = 90°
=> 60° + ^C = 90°
=> ^C = 30° (2)
Ta lại có : ^BAM + ^MAC = ^BAC
=> 60° + ^MAC = 90°
=> ^MAC = 30° (3)
Từ (1) và (2): => ^MAC = ^C ( = 30°)
=> ∆AMC cân tại M
=> AM = MC (4)
Từ (1) và (4): => AB = BM =mc
=> 2AB = BM + MC
=> 2AB = BC
=> AB = BC/2 (đpcm)
b)
{ Giả thiết: ∆ABC vuông tại A,có gócACB = 30°
{ KL: cạnh đối diện gócACB (tức cạnh AB) = nửa cạnh huyền (tức cạnh BC)
*Chứng minh :
- Có gócACB = 30° --> gócABC = 60° ( do tổng 3 góc trong 1 tam giác = 180°)
- Gọi M là trung điểm BC --> MB = MC = BC/2
- Trong tam giác vuông thì đường trung tuyến xuất phát từ đỉnh góc vuông = 1/2 cạnh huyền --> AM = 1/2BC = BM
- Xét ∆ABM có AM = BM --> ∆ABM cân cại M,lại có gócABM = 60°
--> ∆ABM là tam giác đều (tam giác cân có 1 góc = 60° thì là tam giác đều)
--> AB = AM = BM = 1/2BC (ĐPCM)