K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

D= [(1-1/2)(1-1/3)...(1-1/25)]:[(1+1/2)(1+1/3)...(1+1/25)]

D= [1/2. 2/3. ... . 24/25]: [3/2. 4/3. ... . 26/25]

D= 1/25 : 2/26

D= 1/25 . 26/2= 13/25

Vậy D= 13/25

28 tháng 4 2016

\(D=\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{25}\right)\right]\)\(:\left[\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{25}\right)\right]\)

\(D=\left[\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{24}{25}\right]:\left[\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{26}{25}\right]\)

\(D=\frac{1.2.3...24}{2.3.4...25}:\frac{3.4.5...26}{2.3.4...25}\)

\(D=\frac{1}{25}:13\)

\(D=\frac{1}{325}\)

14 tháng 4 2019

\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)

\(\Rightarrow T=\frac{1004}{1005}\)

14 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\frac{2010}{2011}\)

\(\Rightarrow A=\frac{1005}{2011}\)

a) \(\left(-\frac{1}{4}\right)^0=1\)

b) \(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{49}{9}\)

c) \(\left(\frac{4}{5}\right)^{-2}=\frac{25}{16}\)

d) \(\left(0,5\right)^{-3}=8\)

e) \(\left(-1\frac{1}{3}\right)^4=\left(-\frac{4}{3}\right)^4=\frac{256}{81}\)

8 tháng 8 2019

a, \(\left(\frac{-1}{4}\right)^0\) = 1

Bất kỳ số nguyên nào nếu có mũ bằng 0 đều bằng 1

b, \(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{49}{9}\)

31 tháng 3 2019

a) \(\frac{53}{101}.\frac{-13}{97}+\frac{53}{101}.\frac{-84}{97}\)

\(=\frac{53}{101}\left(\frac{-13}{97}+\frac{-84}{97}\right)\)

\(=\frac{53}{101}.\frac{-97}{97}\)

\(=\frac{53}{101}.\left(-1\right)\)

\(=\frac{-53}{101}\)

b) \(\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)

\(=\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)

\(=\left(\frac{1}{57}-\frac{1}{5757}\right).0\)

\(=0\)

31 tháng 3 2019

c) \(\frac{3^2}{25}.\frac{75}{-21}.\frac{50}{35}\)

\(=\frac{3^2.75.50}{25.\left(-21\right).35}\)

\(=\frac{3.3.25.3.5.5.2}{25.3.\left(-7\right).5.7}\)

\(=\frac{3.3.5.2}{\left(-7\right).7}\)

\(=\frac{90}{-49}\)

d) \(\frac{25.48-25.18}{20.5^3}\)

\(=\frac{25\left(48-18\right)}{10.2.125}\)

\(=\frac{25.10.3}{10.2.25.5}\)

\(=\frac{3}{10}\)

12 tháng 7 2016

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)..........\left(\frac{1}{99}+1\right)\)

\(=\frac{3}{2}.\frac{4}{3}.........\frac{100}{99}\)

\(=\frac{100}{2}=50\)

\(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).........\left(\frac{1}{100}-1\right)\)

\(=-\frac{1}{2}.-\frac{2}{3}..........-\frac{99}{100}\)

\(=\frac{-1}{100}\)

12 tháng 7 2016

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)

  \(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)

\(=\frac{3.4.5.....100}{2.3.4.....99}\)

 \(=\frac{100}{2}=50\)