Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không biết đầu bài của bạn là gì nhưng nếu rút gọn thì bạn làm theo cách này nha
(a2+ab+b2).(a2 - ab + b2) - (a4+b4)
= (a2+b2)2-(ab)2-a4-b4
= a4+2(ab)2+b4-(ab)2-a4-b4
= (ab)2
Nếu bạn có gì khó hiểu với lời giải này thì cứ hỏi mình nha
phân tích ra là:(a2+b2-ab)(a2+b2+ab)=(a2+b2)2 - (ab)2 hằng đẳng thức.
=>bất đẳng thức bằng (a2+b2)2 - (ab)2 -(a4+b4)=a4+b4+2a2b2 - (ab)2-(a4+b4)=a2b2.
đề chứng mình gì rứa?
a)
△AQD và △CNB có:
- \(\widehat{DAQ}=\widehat{BCN}\) (Hai nửa của 2 góc bằng nhau)
- AP = BC (Hai cạnh đôi 1 hình bình hành)
- \(\widehat{ADQ}=\widehat{CBN}\) (Hai nửa của 2 góc bằng nhau)
⇒ △AQD = △CNB (g-c-g) ⇒ AQ = CN
Tương tự có: AM = CP
△AMQ và △CPN có:
- AQ = CN (cmt)
- \(\widehat{MAQ}=\widehat{PCN}\) (Hai nửa của 2 góc bằng nhau)
- AM = CP (cmt)
⇒ △AMQ = △CPN (c-g-c) ⇒ MQ = NP (1)
Tương tự cũng có MN = QP (2)
△MQP có O là trung điểm của cạnh MP và QO vuông góc MP (tính chất 2 tia phân giác của 2 góc kề bù) ⇒ QO là trung tuyến ứng với cạnh MP đồng thời cũng là đường cao ứng với cạnh này ⇒ △MQP cân tại Q ⇒ QM = OP (3)
Từ (1), (2), (3) có MN = NP = PQ = QM ⇒ MNPQ là hình thoi (theo dấu hiệu 1: Tứ giác có 4 cạnh bằng nhau là hình thoi)
b)
Theo câu a, MNPQ là hình thoi nên AC vuông góc BD và hình thoi có các đường chéo là phân giác của các góc nên các tam giác: △AMO = △CNO = △CPO = △AQO (g-c-g)
⇒ OM = ON = OP = OQ ⇒ MP = NQ ⇒ MNPQ là hình chữ nhật
△MOQ = △MON (c-g-c) ⇒ MN = MQ ⇒ Hình chữ nhật MNPQ lại là hình vuông (Theo dấu hiệu 1: Hình chữ nhật có 2 cạnh kề bằng nhau là hình vuông)
Vậy MNPQ là hình vuông ⇔ ABCD là hình thoi
a) \(\left(2x+1\right)^2-4\left(x+2\right)^2=12\)
\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)=12\)
\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-12=0\)
\(\Leftrightarrow-12x-27=0\)
\(\Leftrightarrow x=\frac{-9}{4}\)
b) xem lại đề
c) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x-3\right)\left(3-x\right)=1\)
\(\Leftrightarrow x^3-27-x\left(x-3\right)^2=1\)
\(\Leftrightarrow x^3-27-x\left(x^2-6x+9\right)-1=0\)
\(\Leftrightarrow x^3-28-x^3+6x^2-9x=0\)
\(\Leftrightarrow6x^2-9x-28=0\)
\(\Leftrightarrow6\left(x^2-\frac{3}{2}x-\frac{14}{3}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}-\frac{251}{48}=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2=\frac{251}{48}=\left(\pm\sqrt{\frac{251}{48}}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{4}=\sqrt{\frac{251}{48}}=\frac{\sqrt{753}}{12}\\x-\frac{3}{4}=-\sqrt{\frac{251}{48}}=\frac{-\sqrt{753}}{12}\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{\pm\sqrt{753}}{12}+\frac{3}{4}=\frac{9\pm\sqrt{753}}{12}\)
d) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(\Leftrightarrow12x+15=0\)
\(\Leftrightarrow x=\frac{-5}{4}\)
Theo giả thiết:
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Dễ thấy \(VT\ge0\forall a;b;c\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)(đpcm)
a) \(a^4+b^4\)
\(=\left(a^2\right)^2+\left(b^2\right)^2\)
\(=\left(a^2-b^2\right).\left(a^2+b^2\right)\)
b) Tương tự
c) \(a^5+b^5\)
\(=\left(\sqrt{a}^5\right)^2+\left(\sqrt{b}^5\right)^2\)
\(=\left(\sqrt{a}^5+\sqrt{b}^5\right).\left(\sqrt{a}^5-\sqrt{b}^5\right)\)
\(x^4+y^4+\left(x+y\right)^4=2\left(x^4+y^4+2x^3y+3x^2y^2+2xy^3\right)\)
\(=2\left(\left(x^4+y^4+2x^2y^2\right)+\left(2x^3y+2xy^3\right)+x^2y^2\right)\)
\(=2\left(\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right)\)
\(=2\left(x^2+y^2+xy\right)^2\)
Đặt x2 + xy + y2 = a2 ; x + y = b.Ta có :
a4 = (a2)2 = (x2 + xy + y2)2 = x4 + y4 + x2y2 + 2x3y + 2xy2 + 2x2y2 = x4 + y4 + x2y2 + 2xy(x2 + y2 + xy) = x4 + y4 + x2y2 + 2xya2 (1)
mà b = x + y
=> b2 = x2 + y2 + 2xy = a2 + xy => b4 = a4 + x2y2 + 2a2xy .Từ (1) và (2) ,ta có :
2a4 = x4 + y4 + a4 + x2y2 + 2xya2 = x4 + y4 + b4.Thay a2 = x2 + xy + y2 ; b = x + y,ta có đpcm
<=>
a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)
b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
(2+2)2=42=16
hoặc (2+2)2=22+2.2.2+22=4+8+4=16
\(\left(2+2\right)^2=4^2=16\)