Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác EDA và tam giác ABC có:
DE=AB(gt)
\(\widehat{D}\)=\(\widehat{B}\)(vì đồng vị)
AD=BC(gt)
\(\Rightarrow\)tam giác EDA=tam giác ABC(c.g.c)
b, vì tam giác ABC cân nên \(\widehat{B}\)=\(\widehat{C}\)=80 độ mà tam giác EDA=tam giác ABC ( câu a)\(\Rightarrow\)\(\widehat{DAE}\)=\(\widehat{BCA}\)=80 độ
hình tự kẻ nha
a, XÉT \(\Delta BDC\), có I , M là TĐ của CD , BC
\(\Rightarrow\)IM là đường trung bình của tg BDC
\(\Rightarrow\)IM = 1/2 BD (t/c đg trung bình )
Xét tg CDE có N là TĐ của DE
I là TĐ của CD
\(\Rightarrow\)NI là đường trung bình của tg CDE
\(\Rightarrow\)NI = 1/2 CE (t/c đg trung bình )
Ta có BD = CE (gt)
NI=1/2 CE
MI = 1/2BD
\(\Rightarrow\)NI = MI
\(\Rightarrow\Delta NIM\)cân tại I
b, Xét \(\Delta CBD\),có MI là đường trung bình
\(\Rightarrow\)MI // AB (t/c đường trung bình )
\(\Rightarrow\)\(\widehat{NMI}=\widehat{APQ}\)( so le trong) (1)
\(\Delta CDE\), có NI là đường trung bình
\(\Rightarrow\)NI // AC (t/c đường trung bình)
\(\Rightarrow\)\(\widehat{MNI}=\widehat{MQC}\)( đồng vị)
mà \(\widehat{MQC}=\widehat{AQP}\)(đối đỉnh )
\(\Rightarrow\widehat{MNI}=\widehat{AQP}\) (2)
\(\Delta MNI\)cân tại I \(\Rightarrow\widehat{INM}=\widehat{IMN}\) (3)
từ (1) , (2) và (3) \(\Rightarrow\widehat{APQ}=\widehat{AQP}\)
\(\Rightarrow\Delta APQ\) cân tại A
c, Gọi AD là tia p/g của góc BAC \(\Rightarrow2\widehat{DAC}=\widehat{BAC}\)( tính chất tia p/g) (*)
xét \(\Delta APQ\)có \(\widehat{BAC}=\widehat{APQ}+\widehat{AQP}\)(tính chất góc ngoài)
mà góc APQ = góc AQP suy ra góc BAC= \(\widehat{2AQP}\)(**)
từ (*) và (**) \(\Rightarrow\widehat{DAC}=\widehat{AQP}\)
Mà 2gocs trên lại ở vị trí so le trong của AD và PM
\(\Rightarrow AD//PM\)
\(\Rightarrow\) MN // vs tia p/g của góc A trong tg ABC
#mã mã#