Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(2x-1\right)^2+\left|2y-x\right|-8=12-5.2^2\)
=> \(\left(2x-1\right)^2+\left|2y-x\right|=12-20+8\)
=> \(\left(2x-1\right)^2+\left|2y-x\right|=0\)
nx:
\(\left(2x-1\right)^2\ge0với\forall x\)
\(\left|2y-x\right|\ge với\forall x,y\)
=> \(\left(2x-1\right)^2+\left|2y-x\right|\ge0với\forall x,y\)
Do đó:\(\left(2x-1\right)^2+\left|2y-x\right|=0\)
<=>\(\left\{\begin{matrix}2x-1=0\\2y-x=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}2x=1\\2y=2\end{matrix}\right.\)
<=>\(\left\{\begin{matrix}x=\frac{1}{2}\\2y=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)
Vậy x=1/2;y=1/4
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|\ge\left|x+\frac{5}{2}+\frac{2}{5}-x\right|=\frac{29}{10}>0\)
Suy ra pt vô nghiệm
Câu 2:
+) TH1: \(3x-6\ge0\Rightarrow3x\ge6\Rightarrow x\ge2\)
Khi đó \(3x-6=x+2\)
\(\Rightarrow3x-x=6+2\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
+) TH2: \(3x-6< 0\Rightarrow3x< 6\Rightarrow x< 2\)
Khi đó: \(-3x+6=x+2\)
\(\Rightarrow-3x-x=-6+2\)
\(\Rightarrow-4x=-4\)
\(\Rightarrow x=1\)
Vậy \(\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\).
Câu 3:
x.x=64=>x=8 hoặc x=-8 mà x.x.x<0 =>x<0
Vậy x=-8
Câu 5:
ta có: nghiệm của đa thức f(x)=x^4 - 16 =0
=> x^4 = 16
=> x= 2 hoặc x= -2
Câu 6:
ta có: f(x1) + f(x2) = 2.x1 + 3 + 2.x2 +3
= 2.(x1 + x2) + 3+ 3
=2.5+6
=16
vậy f(x1) + f(x2)=16
Câu 7:
vì đa thức f(x) =a.x + b có nghiệm x = 1
=> a.1 + b = 0
=> a+b=0 (1)
vì f(0) =5 => a.0+b= 5
=> 0+b = 5
=> b = -5
từ (1) ta có: a+ (-5)=0
=>a=5
vậy a=5 và b=-5
a) Ta có công thức k(k+1).(2.k+1)/6
=> 99(99+1).(2.99+1)/6=328350
b) Ta có công thức (k(k+1)/2)^2
=>(100(100+1)/2)^2=25502500
x.(2x+2)
đặt f(x)=x.(2x+2)=0
=>x=0
hoặc 2x+2=0 => 2x=0-2=-2
=> x=-2/2=-1
vậy f(x) có nghiệm x=0;x=-1
Ta có: \(x\left(2x+2\right)=0\)
\(\Rightarrow2x+2=0\)
\(\Rightarrow2x=-2\)
\(\Rightarrow x=-1\)
Vậy x= -1