Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
Để hàm số xác định thì x-m+2>=0 và x-m+2<>1
=>x>=m-2 và x<>m-1
=>m-2<=0 và \(m-1\notin\left(0;1\right)\)
=>m<=2 và (m-1<=0 hoặc m-1>=1)
=>m=2 hoặc m<=1
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
a: ĐKXĐ: x\(\in\)R\{3}
b: ĐKXĐ: \(\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
Sửa đề: TXĐ là R
a: Để hàm số sau có TXĐ là R thì 2x^2-x+m-2>0 với mọi x
=>\(\left\{{}\begin{matrix}\left(-1\right)^2-4\cdot2\left(m-2\right)< 0\\2>0\end{matrix}\right.\Leftrightarrow1-8m+16< 0\)
=>-8m+17<0
=>-8m<-17
=>m>17/8
b: Để hàm số có TXĐ là R thì x^2-4x-m+1>0 với mọi x
=>\(\left\{{}\begin{matrix}1>0\\\left(-4\right)^2-4\left(-m+1\right)< 0\end{matrix}\right.\Leftrightarrow16+4m-4< 0\)
=>4m+12<0
=>m<-3
Xét pt: \(x^2-2mx+m^2-2m+3=0\) (1)
\(\Delta'=m^2-\left(m^2-2m+3\right)=2m-3\)
- Nếu \(2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\Rightarrow\left(1\right)\) vô nghiệm hay hàm xác định trên R
- Nếu \(2m-3=0\Leftrightarrow m=\dfrac{3}{2}\Rightarrow\left(1\right)\) có nghiệm kép \(x=\dfrac{3}{2}\) hay TXĐ của hàm: \(D=R\backslash\left\{\dfrac{3}{2}\right\}\)
- Nếu \(2m-3>0\Leftrightarrow m>\dfrac{3}{2}\Rightarrow\left(1\right)\) có 2 nghiệm pb \(x_{1,2}=m\pm\sqrt{2m-3}\) hay TXĐ của hàm là: \(D=R\backslash\left\{m-\sqrt{2m-3};m+\sqrt{2m-3}\right\}\)