K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 9 2021

Đặt \(H\left(x\right)=P\left(x\right)-\left(x^2+2\right)\)

\(\Rightarrow H\left(1\right)=H\left(3\right)=H\left(5\right)=0\)

\(\Rightarrow H\left(x\right)\) có 3 nghiệm 1; 3; 5

\(\Rightarrow H\left(x\right)=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)\)

\(\Rightarrow P\left(x\right)=H\left(x\right)+x^2+2=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)+x^2+2\)

\(\Rightarrow P\left(-2\right)+7P\left(6\right)=-105\left(-2-a\right)+4+2+7\left[15\left(6-a\right)+36+2\right]=1112\)

NV
13 tháng 9 2021

Đặt \(g\left(x\right)=f\left(x\right)-x-1\Rightarrow g\left(2\right)=g\left(3\right)=g\left(4\right)=0\)

\(\Rightarrow g\left(x\right)\) có 3 nghiệm 2;3;4

\(\Rightarrow g\left(x\right)=a\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

\(\Rightarrow f\left(x\right)=g\left(x\right)+x+1=a\left(x-2\right)\left(x-3\right)\left(x-4\right)+x+1\)

\(f\left(5\right)=10\Rightarrow a\left(5-2\right)\left(5-3\right)\left(5-4\right)+5+1=10\)

\(\Rightarrow a=\dfrac{2}{3}\)

\(\Rightarrow f\left(x\right)=\dfrac{2}{3}\left(x-2\right)\left(x-3\right)\left(x-4\right)+x+1\)

\(\Rightarrow f\left(6\right)=\dfrac{2}{3}.4.3.2+6+1=...\)

14 tháng 9 2021

Lời giải chi tiết như sau :undefined

20 tháng 12 2019

Đặt \(g\left(x\right)=f\left(x\right)+h\left(x\right)\left(1\right)\)trong đó \(h\left(x\right)=ax^2+bx+c\left(2\right)\)

Tìm \(a,b,c\)sao cho \(g\left(1\right)=g\left(2\right)=g\left(3\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}g\left(1\right)=f\left(1\right)+h\left(1\right)=0\\g\left(2\right)=f\left(2\right)+h\left(2\right)=0\\g\left(3\right)=f\left(3\right)+h\left(3\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}h\left(1\right)=-5\\h\left(2\right)=-11\\h\left(3\right)=-21\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b+c=-5\\4a+2b+c=-11\\9a+3b+c=-21\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b+c=-5\\3a+b=-6\\5a+b=-10\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-2\\b=0\\c=-3\end{cases}}\)Thay vào (2) ta được:

\(h\left(x\right)=4x-3\)

Vì \(g\left(1\right)=g\left(2\right)=g\left(3\right)=0\)mà g(x)  bậc 4 có hệ số cao nhất là 1 nên ta có 

 \(g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-x_0\right)\)

Từ \(\left(1\right)\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-x_0\right)+4x-3\)

\(f\left(-1\right)=\left(-1-1\right)\left(-1-2\right)\left(-1-3\right)\left(-1-x_0\right)+4.\left(-1\right)-3\)

\(=-24\left(-1-x_0\right)-7\)

\(f\left(5\right)=\left(5-1\right)\left(5-2\right)\left(5-3\right)\left(5-x_0\right)+4.5-3\)

\(=24\left(5-x_0\right)+17\)

\(\Rightarrow f\left(-1\right)+f\left(5\right)\)\(=-24\left(-1-x_0\right)-7+24\left(5-x_0\right)+17\)

                                            \(=24+24x_0+120-24x_0+10\)

                                             \(=154\)

21 tháng 12 2019

Xl nha bài sai sót vì thay a,b,c sai r xl 

9 tháng 5 2022

-Đề thiếu, giải hệ 4 ẩn phải có 4 phương trình.

NV
13 tháng 9 2021

Đa thức này thiếu dữ liệu có bậc bao nhiêu

13 tháng 9 2021

Ôi quả là thiếu sót , xin lỗi quý độc giả và thầy cô ạ!undefined

14 tháng 9 2021

Từ giả thiết  ta có \(P\left(k\right).\left(k+1\right)=k\)  

Đặt  \(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)

Khi đó \(Q\left(k\right)=\left(k+1\right).P\left(k\right)-k=0\) thỏa mãn với mọi \(k\in\left\{0;1;2;3;4;.............;2020\right\}\)

Theo định lý  Bézout ta có

\(Q\left(x\right)=x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right).R\left(x\right)\)

Vì đa thức  \(P\left(x\right)\) có bậc là 2020 nên đa thức \(Q\left(x\right)\)  có bậc là 2021.

Suy ra đa thức \(R\left(x\right)\) có bậc là 0 , hay còn gọi là đa thức \(R\left(x\right)\) không  chứa biến số.

Đặt  \(R\left(x\right)=a\)  với \(a\in R\)

Khi đó đa thức \(Q\left(x\right)\) có dạng như sau :

\(Q\left(x\right)=a.x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right)\)
Mặt khác , ta lại có 

\(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)

Thay \(x=-1\) ta có \(Q\left(-1\right)=1\)

Suy ra                 \(a.\left(-1\right).\left(-2\right).\left(-3\right).\left(-4\right).....\left(-2021\right)=1\)

Suy  ra                       \(a=\dfrac{-1}{2021!}\)

Khi đó đa thức \(Q\left(x\right)\)  có dạng như sau :

\(Q\left(x\right)=\dfrac{-1}{2021!}.x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right)\) 

Mặt khác ta lại có  \(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)  

Thay  \(x=2021\) ta có 

\(Q\left(2021\right)=2022.P\left(2021\right)-2021\)  

\(\Rightarrow\dfrac{-1}{2021!}.2021.2020.....1=2022.P\left(2021\right)-2021\)

\(\Rightarrow-1=2022.P\left(2021\right)-2021\) 

\(\Rightarrow P\left(2021\right)=\dfrac{1010}{1011}\)

 

19 tháng 5 2022

tự hỏi tự trả lời ????

 

4 tháng 7 2021

a)\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)

Vậy g/t P không phụ thuộc vào biến.

b)\(Q=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)=-6x^2-2+6x^2-6=-8\)

Vậy g/t Q không phụ thuộc vào biến.

b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)

\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6\left(x^2-1\right)\)

\(=-2\left(3x^2+1\right)+6\left(x^2-1\right)\)

\(=-6x^2-2+6x^2-6\)

=-8