K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:

a. Hình vẽ:

b. Vì điểm $A$ thuộc đths nên $A$ có tọa độ $(a,3a)$

$OA=\sqrt{a^2+(3a)^2}=2\sqrt{10}$

$\sqrt{10a^2}=2\sqrt{10}$

$10a^2=400$

$a=\pm 2$

Vậy tọa độ điểm A là $(2,6)$ hoặc $(-2,-6)$

24 tháng 2 2020

bạn học lớp mấy vậy (^-^)

10 tháng 11 2021

Sửa: \(\left(d\right):y=\left(m-2\right)x+m+1\)

PT giao (d) với Ox \(y=0\Leftrightarrow x\left(m-2\right)=-m-1\Leftrightarrow x=\dfrac{m+1}{2-m}\Leftrightarrow A\left(\dfrac{m+1}{2-m};0\right)\Leftrightarrow OA=\left|\dfrac{m+1}{2-m}\right|\)

PT giao (d) với Oy \(x=0\Leftrightarrow y=m+1\Leftrightarrow B\left(0;m+1\right)\Leftrightarrow OB=\left|m+1\right|\)

Áp dụng HTL: \(\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{\left(\sqrt{2}\right)^2}=\dfrac{1}{2}\)

\(\Leftrightarrow\left|\dfrac{2-m}{m+1}\right|^2+\dfrac{1}{\left|m+1\right|^2}=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{\left(2-m\right)^2}{\left(m+1\right)^2}+\dfrac{1}{\left(m+1\right)^2}=\dfrac{1}{2}\\ \Leftrightarrow2\left(2-m\right)^2+2=\left(m+1\right)^2\\ \Leftrightarrow8-8m+2m^2+2=m^2+2m+1\\ \Leftrightarrow m^2-10m+9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\) thỏa mãn đề bài

25 tháng 12 2015

GTLN của y là 3 khi x = 2. Khi đó khoảng cách đến gốc tọa độ là \(\sqrt{2^2+3^2}=\sqrt{13}\Rightarrow a=13\)

16 tháng 12 2023

a: Thay x=1 và y=2 vào y=(m-1)x+4, ta được:

1(m-1)+4=2

=>m-1+4=2

=>m+3=2

=>m=-1

b:

(d): y=(m-1)x+4

=>(m-1)x-y+4=0

Khoảng cách từ O(0;0) đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)

Để d(O;(d))=2 thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)

=>\(\sqrt{\left(m-1\right)^2+1}=2\)

=>\(\left(m-1\right)^2+1=4\)

=>\(\left(m-1\right)^2=3\)

=>\(m-1=\pm\sqrt{3}\)

=>\(m=\pm\sqrt{3}+1\)