K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

cầm cm cái này trước đã

\(\dfrac{1}{a-b}-\dfrac{1}{a-c}=\dfrac{a-c}{a-b}+\dfrac{a-b}{a-c}=\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}\)

áp dụng vào bài

\(=>\left\{{}\begin{matrix}\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}=\dfrac{1}{a-b}-\dfrac{1}{a-c}\\\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}=\dfrac{1}{b-c}-\dfrac{1}{b-a}\\\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}=\dfrac{1}{c-a}-\dfrac{1}{c-b}\end{matrix}\right.\)

thay vào đề,

=> đpcm

chúc may mắn

23 tháng 12 2018

1)\(\dfrac{c-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}+\dfrac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}+\dfrac{b-a}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}=\dfrac{c-b+a-c+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

14 tháng 5 2017

VP = \(\dfrac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\dfrac{\left(b-c\right)^2}{\left(b+a\right)\left(c+a\right)}+\dfrac{\left(c-a\right)^2}{\left(c+b\right)\left(a+b\right)}\)

\(=\left(a-b\right).\dfrac{\left(a+c\right)-\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}+\left(b-c\right).\dfrac{\left(b+a\right)-\left(c+a\right)}{\left(b+a\right)\left(c+a\right)}+\left(c-b\right).\dfrac{\left(c+b\right)-\left(a+b\right)}{\left(c+b\right)\left(a+b\right)}\)

\(=\left(a-b\right).\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+\left(b-c\right)\left(\dfrac{1}{c+a}-\dfrac{1}{b+a}\right)+\left(c-a\right).\left(\dfrac{1}{a+b}-\dfrac{1}{c+b}\right)\)

\(=\left(a-b\right).\dfrac{1}{b+c}-\left(a-b\right).\dfrac{1}{a+c}+\left(b-c\right).\dfrac{1}{c+a}-\left(b-c\right).\dfrac{1}{b+a}+\left(c-a\right).\dfrac{1}{a+b}-\left(c-a\right).\dfrac{1}{c+b}\)

\(=\left(2a-b-c\right).\dfrac{1}{b+c}+\left(2b-c-a\right).\dfrac{1}{c+a}+\left(2c-a-b\right).\dfrac{1}{a+b}\)

\(=\dfrac{2a}{b+c}-\left(b+c\right).\dfrac{1}{b+c}+\dfrac{2b}{c+a}-\left(c+a\right).\dfrac{1}{c+a}+\dfrac{2c}{a+b}-\left(a+b\right).\dfrac{1}{a+b}\)

\(=2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)-3\left(đpcm\right)\)

15 tháng 5 2017

\(VT=\dfrac{2a^3-a^2b-a^2c-ab^2-ac^2+2b^3-b^2c-bc^2+2c^3}{(a+b)(b+c)(c+a)} \)

\(\\=\dfrac{a^3+a^2b-2a^2b-2ab^2+ab^2+b^3+b^3+b^2c-2b^2c-2bc^2+bc^2+c^3+c^3+c^2a-2c^a+2ca^2-ca^2+a^3}{(a+b)(b+c)(c+a)}\)

\(\\=\dfrac{(a-b)^2(a+b)+(b-c)^2(b+c)+(c-a)^2(c+a)}{(a+b)(b+c)(c+a)}\)

\(\\\Rightarrow VT=\dfrac{(a-b)^2}{(c+a)(b+c)}+\dfrac{(b-c)^2}{(c+a)(a+b)}+\dfrac{(c-a)^2}{(a+b)(b+c)}=VP\)
NV
5 tháng 4 2022

1.

BĐT cần chứng minh tương đương:

\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

Ta có:

\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)

\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)

Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)

\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)

Do \(a;b;c\ge1\)  nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:

\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)

\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Câu 2 em kiểm tra lại đề có chính xác chưa

NV
5 tháng 4 2022

2.

Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS

Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)

\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)

BĐT cần chứng minh tương đương:

\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

Đúng theo (1)

Dấu "=" xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
\(-A=\frac{a^2}{(a-b)(c-a)}+\frac{b^2}{(a-b)(b-c)}+\frac{c^2}{(c-a)(b-c)}\)

\(=\frac{a^2(b-c)+b^2(c-a)+c^2(a-b)}{(a-b)(b-c)(c-a)}=\frac{a^2b+b^2c+c^2a-(ab^2+bc^2+ca^2)}{-[(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)]}=-1\)

$\Rightarrow A=1$

17 tháng 7 2017

Từ \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)

\(=>\dfrac{a}{b-c}+1+\dfrac{b}{c-a}+1+\dfrac{c}{a-b}+1=3\)

\(=>\dfrac{a}{b-c}-\dfrac{b}{a-c}-\dfrac{c}{b-a}=0\)

\(=>\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

Nhân cả 2 vế với \(\dfrac{1}{b-c}\) ta được

\(\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự ta có:

\(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right)\)

\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+cb-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Cộng theo vế (1);(2);(3) ta có ĐPCM

CHÚC BẠN HỌC TỐT.........

17 tháng 12 2020

Ta có: \(A=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}-\dfrac{b^2}{\left(b-a\right)\left(c-b\right)}-\dfrac{c^2}{\left(c-a\right)\left(b-c\right)}\)

\(=\dfrac{a^2\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\dfrac{b^2\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\dfrac{c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{a^2b-a^2c-ab^2+b^2c+ac^2-bc^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{\left(a-b\right)\left(ab+c^2\right)-c\left(a-b\right)\left(a+b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{\left(a-b\right)\left(ab+c^2-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{c^2+ab-c}{\left(a-c\right)\left(b-c\right)}\)

2 tháng 4 2022

\(ĐKXĐ:\)a,b,c đôi một khác nhau.

\(\dfrac{x}{\left(a-b\right).\left(a-c\right)}+\dfrac{x}{\left(b-a\right).\left(b-c\right)}+\dfrac{x}{\left(c-a\right).\left(c-b\right)}=2\)

\(\Leftrightarrow x\left(\dfrac{1}{\left(a-b\right).\left(a-c\right)}+\dfrac{1}{\left(b-a\right).\left(b-c\right)}+\dfrac{1}{\left(c-a\right).\left(c-b\right)}\right)=2\)

\(\Leftrightarrow x\left(\dfrac{-\left(b-c\right)-\left(c-a\right)-\left(a-b\right)}{\left(a-b\right).\left(b-c\right).\left(c-a\right)}\right)=2\)

\(\Leftrightarrow x\left(\dfrac{-b+c-c+a-a+b}{\left(a-b\right).\left(b-c\right).\left(c-a\right)}\right)=2\)

\(\Leftrightarrow x\left(\dfrac{0}{\left(a-b\right).\left(b-c\right).\left(c-a\right)}\right)=2\)

\(\Rightarrow0x=2\) (vô lý)

-Vậy khi a,b,c đôi một khác nhau thì phương trình vô nghiệm.

2 tháng 4 2022

CẢM ƠN NHIỀU NHIỀU NHIỀU NHA

9 tháng 8 2017

a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)

\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)

c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)

\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)

d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)

\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)

\(=\dfrac{x}{x+y}\)

10 tháng 8 2017

thanks hihi