K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

\(\dfrac{2}{3-x}< 0< =>3-x< 0\left(2>0\right)< =>x>3\)

vậy........

chúc bạn hcoj tốt ^^

14 tháng 5 2018

Tríp Bô Hắc: ủa 2 chả lớn hơn 0,điều hiển nhiên mà

14 tháng 5 2018

Vì 2 > 0 nên để \(\frac{2}{x-3}< 0\)  thì   x - 3 < 0          <=>    x < 3

14 tháng 5 2018

\(\frac{2}{x-3}< 0\)

vì 2>0 => x-3 < 0 <=>x<3

21 tháng 7 2017

\(x^3+x=0\)

\(\Leftrightarrow x\left(x^2+1\right)=0\)

thấy :x2+1>0 loại

suy ra x=0

24 tháng 12 2021

a) điều kiện xác định: x≠3 và x≠2

b) \(\dfrac{x^2-4}{\left(x-3\right)\left(x-2\right)}\)=\(\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)}\)=\(\dfrac{x+2}{x-3}\)

Tại x=13 ta có \(\dfrac{13+2}{13-3}\)=\(\dfrac{3}{2}\)

 

28 tháng 9 2021

\(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x+2=3\\x+2=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Vậy...

26 tháng 2 2022

ko có ảnh bn ơi

26 tháng 2 2022

Đề bài là gì zạ? lolang

17 tháng 7 2017

\(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2-18=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)\left(4x^2+8x+3\right)-18=0\)

Đặt \(x^2+2x+1=a\ge0\)

\(\Rightarrow a\left(4a-1\right)-18=0\)

\(\Leftrightarrow4a^2-a-18=0\)

\(\Leftrightarrow\left(4a^2+8a\right)+\left(-9a-18\right)=0\)

\(\Leftrightarrow\left(a+2\right)\left(4a-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-2\left(l\right)\\a=\frac{9}{4}\end{cases}}\)

\(\Rightarrow x^2+2x+1=\frac{9}{4}\)

\(\Leftrightarrow4x^2+8x-5=0\)

\(\Leftrightarrow\left(4x^2-2x\right)+\left(10x-5\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}\)

17 tháng 8 2018

\(\left(x^2+x\right)^2-2x^2-2x-15\)

\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)

\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)

\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)

đặt \(x^2+x=t\)

\(\left(1\right)\)\(=\)  \(t^2-2t-15\)

            \(=\left(t-1\right)^2-16\)

            \(=\left(t-1-4\right)\left(t-1+4\right)\)

           \(=\left(t-5\right)\left(t+3\right)\)

thay \(t=x^2+x\) ta có

\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)

các câu còn lại tương tự nha

học tốt 

10 tháng 5 2018

Đường ....... sai rồi :v 

Áp dụng bđt Cauchy - Schwarz dạng engel (full name nhé) , ta có 

\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=\frac{9}{3+a+b+c}\ge\frac{9}{3+3}=\frac{3}{2}\)

Đẳng thức xảy ra <=> \(a=b=c=1\)

10 tháng 5 2018

k cho mik đi rồi mik giải cho

a: ĐKXĐ: x<>2; x<>-3

b: \(P+\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\dfrac{x-4}{x-2}\)

c: Để P=-3/4 thì x-4/x-2=-3/4

=>4x-8=-3x+6

=>7x=14

=>x=2(loại)

e: x^2-9=0

=>x=3 (nhận) hoặc x=-3(loại)

Khi x=3 thì \(P=\dfrac{3-4}{3-2}=-1\)