K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

\(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)(đk: \(x\ne y\ne z\))

\(=\dfrac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)

Chắc đề là tính ha!

\(=\dfrac{x+y+y-z+x-y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ =\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ =0\\ Vậy.A=0\)

21 tháng 11 2017

d)

\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)

=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)

=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)

22 tháng 11 2017

Cảm ơn, mình làm được rồi :>

7 tháng 5 2018

nhân cả 2 vế với 2 rồi bunhia

6 tháng 4 2018

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm

26 tháng 11 2022

a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

=0

c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{1}{xyz}\)

 

28 tháng 11 2022

a: \(=\dfrac{1}{\left(x-y\right)\left(y-z\right)}-\dfrac{1}{\left(y-z\right)\left(x-z\right)}-\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)

b: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(x-y\right)\left(y-z\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{z\left(y^2-x^2\right)-z^2\left(y-x\right)-xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{\left(x-y\right)\left[-z\left(x+y\right)+z^2+xy\right]}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{-zx-zy+z^2+xy}{xyz\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{z\left(z-x\right)-y\left(z-x\right)}{xyz\left(y-z\right)\left(x-z\right)}=\dfrac{1}{xyz}\)

2 tháng 1 2019

* Nếu x + y + z = 0

\(A=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{z}{y}\right)\left(1+\dfrac{x}{z}\right)\)

\(=\dfrac{x+y}{x}\cdot\dfrac{y+z}{y}\cdot\dfrac{z+x}{z}=\dfrac{\left(-z\right)}{x}\cdot\dfrac{\left(-x\right)}{y}\cdot\dfrac{\left(-y\right)}{z}=\dfrac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-\dfrac{xyz}{xyz}=-1\)

* Nếu x + y + z khác 0

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x-y-z}{x}=\dfrac{y-x-z}{y}=\dfrac{-x-y+z}{z}=\dfrac{x-y-z+y-x-z-x-y+z}{x+y+z}=\dfrac{-x-y-z}{x+y+z}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x-y-z=-x\\y-x-z=-y\\-x-y+z=-z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\Rightarrow x=y=z\)

\(\Rightarrow A=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{z}{y}\right)\left(1+\dfrac{x}{z}\right)\)

\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)

20 tháng 3 2017

Bài này trên diễn đàn có nhiều thực chưa có bài thực sự đúng

\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\) (1)

đk: \(\left\{{}\begin{matrix}x+y\ne0\\x+z\ne0\\y+z\ne0\end{matrix}\right.\) Nếu x+y+z=0\(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)(*)

Thay (*) vào (1)

\(\dfrac{x}{-x}+\dfrac{y}{-y}+\dfrac{z}{-z}=-3\) kết luận: \(x+y+z\ne0\)

Nhân 2 vế (1) với x+y+z khác 0 ta có\(\left(1\right)\Leftrightarrow\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\left(x+y+z\right)=\left(x+y+z\right)\)

\(\Leftrightarrow\left(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\right)+\left(y+z\right).\dfrac{y}{x+z}+\left(x+y\right).\dfrac{z}{x+y}+\left(x+z\right)\dfrac{x}{y+z}=\left(x+y+z\right)\)

\(\Leftrightarrow\left(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\right)+\left(x+y+z\right)=\left(x+y+z\right)\)\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=0\)

20 tháng 3 2017

Vẫn lỗi:

\(.....\\ \left(x+z\right)\dfrac{x}{y+z}+\left(z+x\right)\dfrac{y}{z+x}+\left(x+y\right)\dfrac{z}{x+y}\)

....

28 tháng 6 2017

Phép cộng các phân thức đại số

Phép cộng các phân thức đại số

đề bài cho như sau : Cho a,b,c > 0 thỏa mãn : ab + bc + ca + 2abc = 1 CMR : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\left(a+b+c\right)\) Cách làm như sau : Từ điều kiện đề bài suy ra tồn tại các số x,y,z >0 thỏa mãn : ( a , b , c ) = \(\left(\dfrac{x}{y+z};\dfrac{y}{x+z};\dfrac{z}{x+y}\right)\) Khi đó , BĐT cần chứng minh tương đương với :...
Đọc tiếp

đề bài cho như sau :

Cho a,b,c > 0 thỏa mãn :

ab + bc + ca + 2abc = 1

CMR : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\left(a+b+c\right)\)

Cách làm như sau :

Từ điều kiện đề bài suy ra tồn tại các số x,y,z >0 thỏa mãn :

( a , b , c ) = \(\left(\dfrac{x}{y+z};\dfrac{y}{x+z};\dfrac{z}{x+y}\right)\) Khi đó , BĐT cần chứng minh tương đương với : \(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{x}{z}\right)+\left(\dfrac{y}{x}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{z}{y}\right)\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)\)(*) BĐT trên hiển nhiên đúng do theo BĐT Cauchy-Schwarz thì : \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{4x}{y+z}\) \(y\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{4y}{x+z}\) \(z\left(\dfrac{1}{y}+\dfrac{1}{x}\right)\ge\dfrac{4x}{y+z}\) Cộng theo vế thì ta thu được (*) , do đó ta có đpcm Dấu "=" xảy ra khi x = y = z => a = b = c = 1/2 CHO MÌNH HỎI LÀ MÌNH KHÔNG HIỂU CHỖ hiển nhiên đúng khi cauchy swat làm sao lại lớn hơn hoặc bằng cái đấy , AI GIẢI THÍCH CHO MÌNH VỚI VÀ THÊM CẢ CHỖ ĐẦU BÀI Ý ĐÚNG 1 PHÁT RA X,Y,Z LÀ SAO ? GIẢI THÍCH NHANH SẼ NHẬN GP
2
7 tháng 11 2017

Các CTV , các bn giỏi toán mau giúp mình với

7 tháng 11 2017

bn đâu thể cho GP đc