K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
4 tháng 10 2020

đề bài \(\Leftrightarrow\frac{bc}{a^2+8bc}+\frac{ca}{b^2+8ca}+\frac{ab}{c^2+8ab}\le\frac{1}{3}\)

\(\Leftrightarrow\left(\frac{1}{8}-\frac{bc}{a^2+8bc}\right)+\left(\frac{1}{8}+\frac{ca}{b^2+8ca}\right)+\left(\frac{1}{8}-\frac{ab}{c^2+8ab}\right)\ge\frac{1}{24}\)

\(\Leftrightarrow\frac{a^2}{a^2+8bc}+\frac{b^2}{b^2+8ca}+\frac{c^2}{c^2+8ab}\ge\frac{1}{3}\)

Mặt khác: vế trái \(\frac{a^2}{a^2+8bc}+\frac{b^2}{b^2+8ca}+\frac{c^2}{c^2+8ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+8\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+6\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=\frac{1}{3}\)

=> đpcm

3 tháng 8 2017

Dean thật, gõ gần xong rồi tự nhiên nó tạch, phải gõ lại -.-

Từ gt, ta suy ra:

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right].\dfrac{1}{2}=0\)(Tự phân tích, không còn kiên nhẫn để gõ lại)

Mà a+b+c khác 0 => a=b=c

Thay vào thì C=8

27 tháng 6 2018

bai 2 :

dat cac tich ab , bc , ca lan luot la x,y,z ( khac 0 )

thay vao ta dc : x^3+y^3+z^3=3xyz

=> (x+y)(x^2-2xy+y^2)+z^3-3xyz=0

=>(x+y)(x^2+2xy+y^2)+z^3-3xy(x+y)-3xyz=0

=》(x+y+z)【(x+y)^2 -(x+y)z+z^2】-3xy(x+y+z)=0

=>(x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0

=>\(\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)=0

=> x+y+z=0 hoac x=y=z

TH1 : a+b+c=0

=>P=-1

TH2 : a=b=c

=>P=8

26 tháng 10 2017

HÌnh như là \(a+b+c\le\dfrac{3}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{3}{2}\ge a+b+c\ge3\sqrt[3]{abc}\Rightarrow\dfrac{1}{2}\ge\sqrt[3]{abc}\)

Áp dụng BĐT Holder ta có:

\(A=\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

\(\ge\left(\sqrt[3]{3^3}+\dfrac{1}{\sqrt[3]{abc}}+\dfrac{1}{\sqrt[3]{abc}}\right)^3\)\(\ge\left(3+\dfrac{1}{\dfrac{1}{2}}+\dfrac{1}{\dfrac{1}{2}}\right)^3=343\)

Xảy ra khi \(a=b=c=\dfrac{1}{2}\)

27 tháng 10 2017

cứ cho là a+b+c <=3/2

đã >=0 đâu mà G với M

17 tháng 9 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{3}{2}\ge a+b+c\ge3\sqrt[3]{abc}\Rightarrow\dfrac{1}{2}\ge\sqrt[3]{abc}\Rightarrow\dfrac{1}{8}\ge abc\)

Áp dụng BĐT Holder ta có:

\(B=\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

\(\ge\left(\sqrt[3]{3\cdot3\cdot3}+\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}+\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}\right)^3\)

\(=\left(3+2\sqrt[3]{\dfrac{1}{abc}}\right)^3\ge\left(3+2\sqrt[3]{\dfrac{1}{\dfrac{1}{8}}}\right)^3=343\)

Khi \(a=b=c=\dfrac{1}{2}\)