Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ D vẽ đường thẳng song song với AC cắt BC tại F
Ta có: \(\bigtriangleup\)ABC cân tại A \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}\) (1)
DF//AC \(\Rightarrow\) DF//EC \(\Rightarrow\) \(\begin{cases} \widehat{ACB}=\widehat{DFB}(2)\\ \widehat{FDI}=\widehat{IEC}(3) \end{cases}\)
Từ (1);(2) \(\Rightarrow\) \(\widehat{ABC}=\widehat{DFB}\)
\(\Rightarrow\) \(\bigtriangleup\)DFB cân tại D
\(\Rightarrow\) BD=DF.
Mà BD=CE(gt) \(\Rightarrow\) CE=DF.
Xét \(\bigtriangleup\)FDI và \(\bigtriangleup\)CEI có:
DF=CE(cmt)
\(\widehat{FDI}=\widehat{IEC}\) (cmt)
DI=IE(I là trung điểm DE)
\(\Rightarrow\) \(\bigtriangleup\)FDI = \(\bigtriangleup\)CEI (c-g-c)
\(\Rightarrow\) \(\widehat{FID}=\widehat{EIC}\)
Ta có: \(\widehat{DIC}+\widehat{CIE}\) = 180o
Mà \(\widehat{FID}=\widehat{EIC}\) (cmt)
\(\Rightarrow\) \(\widehat{DIC}+\widehat{DIF}\) = 180o
\(\Rightarrow\) \(\widehat{FIC}=180^{0}\)
Hay \(\widehat{BIC}=180^{0}\)
\(\Rightarrow\) 3 điểm B,I,C thẳng hàng (đpcm)
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt )
a) OD // CE (_|_ OE) và CD // OE (_|_OD)
=> ODCE là hình bình hành . Mà O^ = 90o
=> ODCE là hình chữ nhật (*) => CE=OD
b) (*) => DCE^ = 90o hay CE_|_ CD
c) tam giác ADC và tam giác CEB:
AD = CE (=DO)
EDC^ = CEB^ = 90o
DC=EB (=OE)
=> tam giác ADC= tam giác CEB (2 cạnh góc vuông)
=> AC = CB ( 2 cạnh tương ứng)
d) AD //= CE (cmt) => tứ giác ACED là hình bình hành => AC // DE (*)
e) DC //= EB => tứ giác DCBE là hình bình hành
=> DE//BC ( 2 cạnh đối) (**)
Từ (*) và (**) => A,C,B thẳng hàng
a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có
DB=EC
\(\widehat{DBH}=\widehat{ECK}\)
Do đó: ΔDBH=ΔECK
Suy ra: HB=CK
b: Xét ΔAHB và ΔAKC có
AB=AC
\(\widehat{ABH}=\widehat{ACK}\)
BH=CK
Do đó: ΔAHB=ΔAKC
c: Xét tứ giác HKED có
HD//KE
HD=KE
Do đó: HKED là hình bình hành
Suy ra: HK//DE
d: Xét hình bình hành HKED có \(\widehat{KHD}=90^0\)
nên HKED là hình chữ nhật
Suy ra: HE=KD
Xét ΔAHE và ΔAKD có
AH=AK
HE=KD
AE=AD
Do đó: ΔAHE=ΔAKD