K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

 Ta có đa giác 1999 cạnh nên có 1999 đỉnh. Do đó phải tồn tại 2 đỉnh kề nhau là P và Q đc sơn bởi cùng 1 màu- màu đỏ (Theo nguyên tắc dirichlet) 

Vì đa giác đã cho là đa giác đều có số đỉnh lẻ nên phải tồn tại 1 đỉnh nào đó nằm trên đường trung trực của đoạn thẳng PQ. Giả sử đỉnh đó là A 

-Nếu A tô màu đỏ thì ta có tam giác APQ là tam giác cân có 3 đỉnh A, P, Q đc tô cùng màu đỏ 
-Nếu A tô màu xanh. Lúc đó gọi B và C là các đỉnh khác nhau của đa giác kề vs P và Q 
-Nếu cả 2 đỉnh B và C đc tô màu xanh thì tam giác ABC cân và có 3 đỉnh cùng tô màu xanh 
-Nếu ngược lại, 1 trong 2 đỉnh B và C đc tô màu đỏ thì tam giác BPQ hoặc tam giác CPQ là tam giác cân có 3 đỉnh đc tô màu đỏ

17 tháng 2 2022

-Ghi tham khảo giùm cái. Tôi biết là bài này bạn sẽ không làm được đâu.

5 tháng 3 2018

 Ta có đa giác 1999 cạnh nên có 1999 đỉnh. Do đó phải tồn tại 2 đỉnh kề nhau là P và Q đc sơn bởi cùng 1 màu- màu đỏ (Theo nguyên tắc dirichlet) 

Vì đa giác đã cho là đa giác đều có số đỉnh lẻ nên phải tồn tại 1 đỉnh nào đó nằm trên đường trung trực của đoạn thẳng PQ. Giả sử đỉnh đó là A 

-Nếu A tô màu đỏ thì ta có tam giác APQ là tam giác cân có 3 đỉnh A, P, Q đc tô cùng màu đỏ 
-Nếu A tô màu xanh. Lúc đó gọi B và C là các đỉnh khác nhau của đa giác kề vs P và Q 
-Nếu cả 2 đỉnh B và C đc tô màu xanh thì tam giác ABC cân và có 3 đỉnh cùng tô màu xanh 
-Nếu ngược lại, 1 trong 2 đỉnh B và C đc tô màu đỏ thì tam giác BPQ hoặc tam giác CPQ là tam giác cân có 3 đỉnh đc tô màu đỏ

NGUYÊN LÍ DIRICHLE Bạn đã học chưa P/s hình như nó lớp 9 mà : )

5 tháng 3 2018

mình chưa học nhưng để mình tìm hiểu xem sao với lại sao bạn không trả lời mình vậy

20 tháng 1 2016

mình mới học lớp 7 thôi

Bài của bạn có thể tổng quát hoá như sau:
Chứng minh rằng trong mọi đa giác lồi với số cạnh chẵn, tồn tại đường chéo không song song với một cạnh nào của đa giác.
Solution:
Nhận xét rằng nếu 1 đa giác có nn cạnh thì có n(n−3)2n(n−3)2 đường chéo.
Xét 1 đa giác lồi bất kì với số cạnh chẵn (đa giác lồi 2k2k cạnh và k≥2k≥2, ở đây của bạn là 16).
AD nhận xét, khi đó số đường chéo của đa giác là: g=k(2k−3)=2k(k−2)+kg=k(2k−3)=2k(k−2)+k, suy ra:
g>2k(k−2)g>2k(k−2) (1).
Giả sử trái lại đa giác này có tính chất : Mỗi đường chéo của nó đều song song với một cạnh nào đó của đa giác. Đa giác này có 2k2k cạnh, vì thế từ (1) suy ra tồn tại ít nhất k−1k−1 đường chéo d1,d2,…,dk−1d1,d2,…,dk−1 mà các đường chéo này cùng song song với một cạnh aa nào đó của tam giác đã cho. Thật vậy, nếu ngược lại mỗi cạnh tối đa là song song k−2k−2 đường chéo, thế thì tối đa ta chỉ có (k−2)2k(k−2)2k đường chéo và g≥2k(k−2)g≥2k(k−2). Điều này mâu thuẫn với (1).
Như thế ta có kk đường thẳng song song với nhau là: d1,d2,…,dk−1,ad1,d2,…,dk−1,a.
Lại có đa giác đã cho là đa giác lồi, nên các đường chéo d1,d2,…,dk−1d1,d2,…,dk−1 cùng nằm trên 1 nửa mặt phẳng bờ XĐ cạnh aa.
Không giảm tổng quát có thể cho d1d1 là đường chéo xa nhất đối với aa (vì nếu không thì đánh số lại các đường chéo trên). Ta có tất cả kk đoạn thẳng phân biệt, nên mỗi đỉnh của đa giác đều là đầu mút của một đoạn nào đó trong số kk đoạn trên. Từ đó suy ra toàn bộ đa giác nằm hẳn về một ửa mặt phẳng xác định bởi d1d1. Do d1d1 là đường chéo, nên điều này mâu thuẫn với tính lồi của đa giác. Vậy giả thiết phản chứng là sai.
Ta có điều phải chứng minh. 

Solution:
Nhận xét rằng nếu 1 đa giác có n cạnh thì có n(n−3)2 đường chéo.
Xét 1 đa giác lồi bất kì với số cạnh chẵn (đa giác lồi 2k cạnh và k≥2, ở đây của bạn là 16).
AD nhận xét, khi đó số đường chéo của đa giác là: g=k(2k−3)=2k(k−2)+k, suy ra:
g>2k(k−2) (1).
Giả sử trái lại đa giác này có tính chất : Mỗi đường chéo của nó đều song song với một cạnh nào đó của đa giác. Đa giác này có 2k cạnh, vì thế từ (1) suy ra tồn tại ít nhất k−1 đường chéo d1,d2,…,dk−1 mà các đường chéo này cùng song song với một cạnh a nào đó của tam giác đã cho. Thật vậy, nếu ngược lại mỗi cạnh tối đa là song song k−2 đường chéo, thế thì tối đa ta chỉ có (k−2)2k đường chéo và g≥2k(k−2). Điều này mâu thuẫn với (1).
Như thế ta có k đường thẳng song song với nhau là: d1,d2,…,dk−1,a.
Lại có đa giác đã cho là đa giác lồi, nên các đường chéo d1,d2,…,dk−1 cùng nằm trên 1 nửa mặt phẳng bờ XĐ cạnh a.
Không giảm tổng quát có thể cho d1 là đường chéo xa nhất đối với a (vì nếu không thì đánh số lại các đường chéo trên). Ta có tất cả k đoạn thẳng phân biệt, nên mỗi đỉnh của đa giác đều là đầu mút của một đoạn nào đó trong số k đoạn trên. Từ đó suy ra toàn bộ đa giác nằm hẳn về một ửa mặt phẳng xác định bởi d1. Do d1 là đường chéo, nên điều này mâu thuẫn với tính lồi của đa giác. Vậy giả thiết phản chứng là sai.
Ta có điều phải chứng minh.

7 tháng 8 2016

số đường chéo của đa giác đó là:

12(12-3):2=54(đuờng chéo )

hiệu hai số ở 2 đầu đường chéo  có giá trị nhỏ nhất là 0( hai số ở 2 đường chéo bằng nhau ), giá trị lớn nhất là 50( 50-0=50)

có 50 hiệu. 54 đường chéo 

=> tồn tại 2 đường chéo có hiệu số ở 2 đầu bằng nhau

6 tháng 8 2016

you là Trần Thùy Dung phải ko

limdim

6 tháng 8 2016

chị Dung hả??? chat đi

26 tháng 6 2017

Câu hỏi của Trần Thùy Dung - Toán lớp 8 - Học toán với OnlineMath