Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. MN = ?
Trong ΔABC có:
M là trung điểm AB (gt)
N là trung điểm AC (gt)
⇒ MN là đường trung bình ΔABC
⇒ MN = 1/2BC (t/c)
Mà BC = 6cm (gt)
⇒ MN=BC/2=6/2=3(cm)
b. C/m: BMNC là hình thang cân
Có MN là đường trung bình ΔABC
⇒ MN//BC
⇒ BMNC là hình thang
Mà góc ABC = góc ACB (ΔABC cân tại A)
⇒ BMNC là hình thang cân (DHNB)
c. C/m: ABCK là hình bình hành
Xét tứ giác ABCK có:
N là trung điểm AC (gt)
N là trung điểm BK (K đ/x với B qua M)
⇒ ABCK là hình bình hành (DHNB)
d. C/m: AHBP là hình chữ nhật
Xét tứ giác AHBP có:
M là trung điểm AB (gt)
M là trung điểm PH ( H đ/x với P qua M)
⇒ AHBP là hình bình hành (DHNB)
Có ΔABC cân tại A
⇒ AP là trung tuyến đồng thời là đg cao
⇒ góc APB = 90 độ
⇒ AHBP là hình chữ nhật (DHNB)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hình thang
a: Xét ΔABC có
D là trung điểm của BC
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: DF//AB
hay ABDF là hình thang
Bài 1:
a) Xét tam giác ABC vuông tại A có:
+ D là trung điểm của AB (gt).
+ E là trung điểm của AC (gt).
=> DE là đường trung bình (Định nghĩa đường trung bình trong tam giác).
=> DE = \(\dfrac{1}{2}\)BC (Tính chất đường trung bình trong tam giác).
Mà BC = 10 cm (gt).
=> DE = 5 cm.
Vậy DE = 5 cm.
b) Xét tam giác ABC vuông tại A có:
DE là đường trung bình (cmt)
=> DE // BC (Tính chất đường trung bình trong tam giác).
Ta có: F là trung điểm của BC (gt). => BF = CF = \(\dfrac{1}{2}\)BC.
Mà DE = \(\dfrac{1}{2}\)BC (cmt).
=> BF = CF = DE = \(\dfrac{1}{2}\)BC.
Xét tứ giác BDEF có:
+ BF = DE (cmt).
+ BF // DE (do DE // BC).
=> Tứ giác BDEF là hình bình hành (dhnb).
c) Xét tam giác ABC vuông tại A:
+ D là trung điểm của AB (gt).
+ F là trung điểm của BC (gt).
=> DF là đường trung bình (Định nghĩa đường trung bình trong tam giác).
=> DF // AC và DF = \(\dfrac{1}{2}\)AC (Tính chất đường trung bình trong tam giác).
Ta có: DF = \(\dfrac{1}{2}\)AC (cmt).
Mà AE = CE = \(\dfrac{1}{2}\)AC (E là trung điểm AC).
=> AE = CE = DF = \(\dfrac{1}{2}\)AC.
Xét tứ giác ADEF có:
+ AE = DF (cmt).
+ AE // DF (do DF // AC).
=> Tứ giác ADEF là hình bình hành (dhnb).
Mà ^DAE = 90o (do tam giác ABC vuông tại A).
=> Tứ giác ADEF là hình chữ nhật (dhnb).
d) Gọi I là giao điểm của AF và DE.
Xét hình chữ nhật ADEF có: I là giao điểm của AF và DE (cách vẽ).
=> I là trung điểm của AF và DE (Tính chất hình chữ nhật). (1)
Ta có: G là điểm đối xứng của F qua D (gt).
=> D là trung điểm của CG.
=> DF = \(\dfrac{1}{2}\)GF.
Mà DF = \(\dfrac{1}{2}\)AC (cmt).
=> GF = AC.
Xét tứ giác GACF có:
+ GF = AC (cmt).
+ GF // AC (do DF // AC).
=> Tứ giác GACF là hình bình hành (dhnb).
=> Giao điểm của 2 đường chéo AF và GC là trung điểm mỗi đường (Tính chất hình bình hành).
Mà I là trung điểm của AF (cmt)
=> I là trung điểm của GC (2).
Từ (1) và (2) => Các đường thẳng AF; GC; DE cùng cắt nhau tại điểm I.
hay các đường thẳng AF; GC; DE cùng cắt nhau tại trung điểm mỗi đường (đpcm).
d: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
hay BDEC là hình thang