K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

 Ta có: NM//AB

=> \(\dfrac{NM}{AB}=\dfrac{CN}{AC}< =>AB=1,5\cdot\dfrac{20}{1,25}=24\left(m\right)\)

Vậy tòa nhà đó cao 24m

14 tháng 5 2021

xen kiu bạn nha

Ta có:MN\(\perp\)CB

AB\(\perp\)CB

Do đó: MN//AB

Xét ΔCAB có MN//AB

nên \(\dfrac{MN}{AB}=\dfrac{CN}{CB}\)

=>\(\dfrac{1.5}{AB}=\dfrac{1.2}{6}=\dfrac{1}{5}\)

=>AB=1,5*5=7,5(m)

Ta có :

\(\dfrac{NM}{AB}\) và \(\dfrac{CN}{CA}\) .

Vì \(\dfrac{NM}{AB}\) = \(\dfrac{CN}{CA}\) \(\Leftrightarrow\) AB = 1,5 . \(\dfrac{20}{1,25}\) = 24 ( m ) .

Vậy chiều cao AB của tòa nhà đó là 24 m .

9 tháng 6 2021

Gọi chiều cao của cây là h = A'C' và cọc tiêu AC = 2m.

Khoảng cách từ chân đến mắt người đo là DE = 1,6m.

Cọc xa cây một khoảng A'A = 15m, và người cách cọc một khoảng AD = 0,8m và gọi B là giao điểm của C'E và A'A.

Ta có: A’C’ ⊥ A’B, AC ⊥ A’B, DE ⊥ A’B

⇒ A’C’ // AC // DE.

Ta có: ΔDEB 

9 tháng 6 2021

Giải bài 53 trang 87 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi chiều cao của cây là h = A'C' và cọc tiêu AC = 2m.

Khoảng cách từ chân đến mắt người đo là DE = 1,6m.

Cọc xa cây một khoảng A'A = 15m, và người cách cọc một khoảng AD = 0,8m và gọi B là giao điểm của C'E và A'A.

Ta có: A’C’ ⊥ A’B, AC ⊥ A’B, DE ⊥ A’B

⇒ A’C’ // AC // DE.

Ta có: ΔDEB