Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=1/3x^2y+xy^2-xy+1/2xy^2-5xy-1/3x^2y`
`=(1/3x^2y-1/3x^2y)+(xy^2+1/2xy^2)-xy-5xy`
`=3/2xy^2-6xy`
a)B=3x3 -2y3-6x2y2+xy
B=(3x3-6x2y2)+(xy-2y3)
B=3x2(x-2y2)+y(x-2y2)
B=(x-2y2)(3x2+y)
tại x=\(\frac{2}{3}\)và y=\(\frac{1}{2}\)ta có B=(x-2y2)(3x2+y)=(\(\frac{2}{3}\)-2*\(\frac{1}{2}\)^2 )(3*\(\frac{2}{3}\)^2+\(\frac{1}{2}\))=\(\frac{1}{6}\)*\(\frac{11}{6}\)=\(\frac{11}{36}\)
b)C= 2x+xy2-x2y-2y
C=(2x-2y)+(xy2-x2y)
C=2(x-y)-xy(x-y)
C=(2-xy)(x-y)
tại x=\(-\frac{1}{2}\)và y=\(-\frac{1}{3}\)ta có C=(2-xy)(x-y)=(2-\(-\frac{1}{2}\)*\(-\frac{1}{3}\))(\(-\frac{1}{2}\)+\(\frac{1}{3}\))=\(\frac{-11}{36}\)
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
c) (xy-1).(xy+5)
= x2y2+5xy-xy-5
=x2y2+4xy-5
a) b) d) bạn có thể ghi rõ được ko
bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1
bài 2: =(x-3)2+1
vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3
Bài 1 :
a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)
\(=15x^3-6x^2-3x\)
b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)
\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)
\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)
d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)
\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)
\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)
e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)
= \(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)
\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)
Bài 2 :
3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15
Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)
\(=-\frac{15}{2}-3+15=\frac{9}{2}\)
b) 25x - 4(3x - 1) + 7(5 - 2x)
= 25x - 12x + 4 + 35 - 14x
= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39
Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37
c) 4x - 2(10x + 1) + 8(x - 2)
= 4x - 20x - 2 + 8x - 16
= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18
Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)
d) Tương tự
Bài 3:
a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)
=> 2x2 - 8x - 2x2 - 3x = 4
=> (2x2 - 2x2) + (-8x - 3x) = 4
=> -11x = 4
=> x = \(-\frac{4}{11}\)
b) x(5 - 2x) + 2x(x - 7) = 18
=> 5x - 2x2 + 2x2 - 14x = 18
=> 5x - 14x = 18
=> -9x = 18
=> x = -2
Còn 2 câu làm tương tự
A=1/3x^2y-1/3x^2y+xy^2-xy+1/2xy^2-5xy
=3/2xy^2-6xy
=3/2*1/2*1^2-6*1/2*1
=3/4-3=-9/4
`@` `\text {Ans}`
`\downarrow`
`A = 1/3x^2y + xy^2 - xy + 1/2xy^2 - 5xy - 1/3x^2y`
`= (1/3 x^2y - 1/3x^2y) + (xy^2 + 1/2xy^2) + (-xy - 5xy)`
`= 3/2 xy^2 - 6xy`
Thay `x = 1/2; y = 1` vào A
`A = 3/2* 1/2 * 1^2 - 6*1/2 * 1`
`= 3/4 - 3`
`= -9/4`
Vậy, `A = -9/4.`