Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
có |x-2017|luôn\(\ge0\forall x\in Q\)
cũng có |-1|luôn\(\ge0\forall x\in Q\)
=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)
=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016
dấu''='' xảy ra <=>(x-2017)(1-x)=0
TH1:
=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)
TH2:
=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)
tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
P = - x2 - 8x + 5
P = - ( x2 + 8x - 5 )
P = - ( x2 + 2 . 4 . x + 42 - 42 - 5 )
P = - [ ( x + 4 )2 - 21 ]
P = - ( x + 4 )2 + 21 \(\le\)21
Dấu " = " xảy ra \(\Leftrightarrow\)x + 4 = 0
\(\Rightarrow\)x = - 4
Vậy : Min P = 21 \(\Leftrightarrow\)x = - 4
\(A=\frac{2020}{9-x}\left(x\ne9\right)\)
Để A đạt GTLN thì 9-x bé nhất
=> 9-x=1
=> x=8
Vậy \(A_{max}=\frac{2020}{9-8}=2020\)tại x=8
Hok Tốt !!!!!!!!!!!!!!
\(A=\frac{2020}{9-x}\)
A đạt giá trị lớn nhất
\(\Leftrightarrow\frac{2020}{9-x}\) lớn nhất
\(9-x\) nhỏ nhất ( vì 2020 là hằng số )
Vì 9 - x khác 0
\(\Rightarrow9-x=1\)
\(x=9-1\)
\(x=8\)
\(A=\frac{2020}{9-x}=\frac{2020}{9-8}=2020\)
Vật Giá trị lớn nhất cả A là 2020 khi và chỉ khi x = 8
Với giá trị nguyên nào của x thì biểu thức A = 14-x/4-x có giá trị lớn nhất ? Tìm giá trị đó
A = 14 - x / 4 - x
để A có giá trị lớn nhất thì A > 0 = > x < 4 = 4 -x bé nhất
= > x = { 1 ; 2 ; 3 }
để 4 trừ x bé nhất thì x = 3
giá trị đó là : 14 - 3 / 4 - 3 = 11 / 1 = 11
ta có :
A = 14 - x / 4 - x
để A có giá trị lớn nhất thì A > 0 = > x < 4 = 4 -x bé nhất
= > x = { 1 ; 2 ; 3 }
để 4 trừ x bé nhất thì x = 3
giá trị đó là : 14 - 3 / 4 - 3 = 11 / 1 = 11