K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2021

\(\lim\left(u_n-2\right)=0\) ;\(\forall n\Rightarrow\lim\left(u_n\right)=2\)

\(\Rightarrow\lim\left(u_n^2+2u_n-1\right)=2^2+2.2-1=7\)

26 tháng 2 2017

Đặt v= un – 1.

Lấy số dương d > 0 bé tùy ý

⇒ luôn tồn tại Giải bài 2 trang 121 sgk Đại Số 11 | Để học tốt Toán 11 thỏa mãn Giải bài 2 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

⇒ Giải bài 2 trang 121 sgk Đại Số 11 | Để học tốt Toán 11 với mọi n ≥ n0.

⇒ Theo định nghĩa ta có:

Giải bài 2 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

24 tháng 12 2018

8 tháng 2 2022

Ủa lớp 9 học lim rồi á?

NV
30 tháng 12 2020

\(u_n=2u_{n-1}+3n-1\)

\(\Leftrightarrow u_n+3n+5=2\left(u_{n-1}+3\left(n-1\right)+5\right)\)

Đặt \(u_n+3n+5=v_n\Rightarrow\left\{{}\begin{matrix}v_1=10\\v_n=2v_{n-1}\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội 2

\(\Rightarrow v_n=10.2^{n-1}\Rightarrow u_n+3n+5=10.2^{n-1}\)

\(\Leftrightarrow u_n=10.2^{n-1}-3n-5\)

\(\Rightarrow u_{2019}=10.2^{2018}+3.2019-1=...\)

10 tháng 9 2023

a) Để chứng minh rằng Un > 1 đối với mọi N và Un là dãy tăng, ta có thể sử dụng phương pháp quy nạp.

Bước cơ sở: Ta thấy rằng u1 = 2 > 1.

Bước giả sử: Giả sử đúng đối với một số nguyên k ≥ 1, tức là uk > 1.

Bước bước: Ta sẽ chứng minh rằng uk+1 > 1. Từ công thức cho dãy (Un), ta có:

uk+1 = uk-2015 + uk + 1/uk - uk + 3

Vì uk > 1 (theo giả thiết giả sử), ta có uk - 2015 > 0 và uk + 3 > 0. Do đó, uk+1 > 0.

Vì vậy, ta có uk+1 > 1, và đẳng thức này đúng đối với mọi số nguyên k ≥ 1.

Do đó, ta chứng minh được rằng Un > 1 đối với mọi N và Un là dãy tăng.

b) Để tính limn∑i=11uk - i + 2, ta có thể sử dụng định nghĩa của dãy (Un) và công thức tổng của dãy số aritmeti.

Từ công thức cho dãy (Un), ta có:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

Vì Un là dãy tăng, ta có thể viết lại công thức trên như sau:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

= (uk+1 - 2015 + uk + 1) - (uk - 2015 + uk) + (uk+1 - uk)

= 2uk+1 - 2uk + 2015

Do đó, ta có thể viết lại tổng như sau:

∑i=11uk - i + 2 = 2∑i=11uk+1 - 2∑i=11uk + 2015∑i=1

= 2(u12 - u2) + 2015(12)

Với giá trị cụ thể của u12 và u2, ta có thể tính được tổng trên.

2 tháng 3 2017

l i m   v n   =   0   ⇒   | v n | có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi (1)

Vì | u n |   ≤   v n   v à   v n   ≤   | v n | với mọi n, nên | u n |   ≤   | v n | với mọi n. (2)

Từ (1) và (2) suy ra | u n | cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là l i m   u n = 0

3 tháng 2 2018

Vì l i m   u n   =   − ∞ nên l i m ( − u n )   =   + ∞ . Do đó ( − u n ) có thể lớn hơn một số dương lớn tuỳ ý, kể từ một số hạng nào đó trở đi. (1)

Mặt khác, vì v n   ≤   u n  với mọi n nên ( − v n )   ≥   ( − u n ) với mọi n. (2)

Từ (1) và (2) suy ra ( − v n ) có thể lớn hơn một số dương lớn tuỳ ý, kể từ một số hạng nào đó trở đi. Do đó, l i m ( − v n )   =   + ∞ hay   l i m   v n   =   − ∞