Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Cái này chuẩn CBS dạng đặc biệt với hai tử số bằng 1
Dấu "=" xảy ra khi \(a=b\)
Cauchy đi mài ._.
Vì a, b > 0 nên áp dụng bđt Cauchy cho :
- Bộ số a, b ta được :
\(a+b\ge2\sqrt{ab}\)
- Bộ số 1/a, 1/b ta được :
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=2\cdot\frac{\sqrt{1}}{\sqrt{ab}}=\frac{2}{\sqrt{ab}}\)
Nhân hai vế tương ứng ta có đpcm
Dấu "=" xảy ra <=> a = b
Câu a :
Theo BĐT trên ta có :
\(\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=2\)
Đẳng thức xảy ra khi \(x=0\)
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
Áp dụng BĐT cauchy schawrz dạng engel ta có:
\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Áp dụng BĐT cauchy schawrz dạng engel, ta có:
\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Vì số lượng bài khá nhiều và mình cũng không có quá nhiều thời gian nên không tránh khỏi sai sót, nếu phát hiện mong bạn thông cảm! Bài của tớ làm khá tắt bước, chỉ nên tham khảo. Bạn có thể tự biểu diễn tập nghiệm được không?
a. \(x+8>3x-1\)
\(\Leftrightarrow-2x>-9\)
\(\Leftrightarrow x< \frac{9}{2}\)
b. \(3x-\left(2x+5\right)\le\left(2x-3\right)\)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow-x\le2\)
\(\Leftrightarrow x\ge2\)
c. \(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow2x>-12\Leftrightarrow x>-6\)
d. \(2\left(3x-1\right)-2x< 2x+1\)
\(\Leftrightarrow6x-2-2x< 2x+1\)
\(\Leftrightarrow2x< 3\)
\(\Leftrightarrow x< \frac{3}{2}\)
e. \(\frac{3-2x}{5}>\frac{2-x}{3}\)
\(\Leftrightarrow3\left(3-2x\right)>5\left(2-x\right)\)
\(\Leftrightarrow9-6x>10-5x\)
\(\Leftrightarrow-x>1\) \(\Leftrightarrow x< -1\)
f. \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)
\(\Leftrightarrow x-2-2x+2\le3x\)
\(\Leftrightarrow-4x\le0\Leftrightarrow x\ge0\)
g. \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)
\(\Leftrightarrow2x+2>2x-1\ge24\)
\(\Leftrightarrow2x+2>2x\ge25\)
\(\Leftrightarrow x\ge\frac{25}{2}\)
h. \(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)
\(\Leftrightarrow6+4x+2>2x-1-12\)
\(\Leftrightarrow2x>-25\)
\(\Leftrightarrow x>-\frac{25}{2}\)
i. \(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)
\(\Leftrightarrow x+5-4x-2\le3x+9\)
\(\Leftrightarrow-6x\le6\)
\(\Leftrightarrow x\ge-1\)
j. \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)
\(\Leftrightarrow10x+8-2x+1\ge48\)
\(\Leftrightarrow8x\ge39\)
\(\Leftrightarrow x\ge\frac{39}{8}\)
Bạn tự biểu diễn nghiệm trên trục số nhé!
a) \(x+8>3x-1\)
\(\Leftrightarrow x-3x>-8-1\)
\(\Leftrightarrow-2x>-9\)
\(\Leftrightarrow x< \frac{9}{2}\)
b) 3x − (2x+5) ≤ (2x−3)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow3x-2x+2x\le5-3\)
\(\Leftrightarrow3x\le2\)
\(\Leftrightarrow x\le\frac{2}{3}\)
c) (x − 3) (x + 3) < x (x + 2) + 3
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow x^2-x^2+2x< 9+3\)
\(\Leftrightarrow2x< 12\)
\(\Leftrightarrow x< 6\)
d) 2 (3x − 1) − 2x < 2x + 1
\(\Leftrightarrow6x-2-2x< 2x+1\)
\(\Leftrightarrow6x-2x+2x< 2+1\)
\(\Leftrightarrow6x< 3\)
\(\Leftrightarrow x< \frac{3}{6}\)
e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
\(\Leftrightarrow\frac{\left(3-2x\right)\times3}{15}>\frac{\left(2-x\right)\times5}{15}\)
\(\Leftrightarrow9-6x>10-5x\)
\(\Leftrightarrow-6x+5x>-9+10\)
\(\Leftrightarrow-x>1\)
\(\Leftrightarrow x< -1\)
f)\(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)
\(\Leftrightarrow x-2-2x+2\le3x\)
\(\Leftrightarrow-4x\le0\)
\(\Leftrightarrow x\ge0\)
g) \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)
\(\Leftrightarrow\frac{\left(x+1\right)\cdot2}{6}>\frac{2x-1}{6}\ge\frac{4\cdot6}{6}\)
\(\Leftrightarrow2x+2>2x+1\ge24\)
\(\Leftrightarrow2x+2>2x\ge25\)
\(\Leftrightarrow x\ge\frac{25}{2}\)
h)\(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)
\(\Leftrightarrow\frac{1}{6}+\frac{\left(2x+1\right)\cdot2}{6}>\frac{2x-1}{6}-\frac{2\cdot6}{6}\)
\(\Leftrightarrow6+4x+2>2x-1-12\)
\(\Leftrightarrow2x>-21\)
\(\Leftrightarrow x>\frac{-21}{2}\)
i)\(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)
\(\Leftrightarrow\frac{x+5}{6}-\frac{\left(2x+1\right)\cdot2}{6}\le\frac{\left(x+3\right)\cdot3}{6}\)
\(\Leftrightarrow x+5-4x+2\le3x+9\)
\(\Leftrightarrow-3x-x+4x\le9-5-2\)
\(\Leftrightarrow x\le2\)
j) \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)
\(\Leftrightarrow\frac{\left(5x+4\right)\cdot2}{12}-\frac{2x-1}{12}\ge\frac{4\cdot12}{12}\)
\(\Leftrightarrow10x+8-2x-1\ge48\)
\(\Leftrightarrow10x-2x\ge48-8+1\)
\(\Leftrightarrow8x\ge41\)
\(\Leftrightarrow x\ge\frac{41}{8}\)
Mình không chắc là mình làm đúng đâu. Nhưng có sai sót gì thì cứ nói cho mình biết. Chúc bạn học tốt ^-^
\(a,2x\left(x+5\right)=\left(x+3\right)^2+\left(x-1\right)^2+20\)
\(\Leftrightarrow2x^2+10x=x^2+6x+9+x^2-2x+1+20\)
\(\Leftrightarrow2x^2-x^2-x^2+10x-6x+2x=30\)
\(\Leftrightarrow6x=30\)
\(\Leftrightarrow x=5\)
\(b,\left(2x-2\right)^2=\left(x+1\right)^2+3\left(x-2\right)\left(x+5\right)\)
\(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3\left(x^2+3x-10\right)\)
\(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3x^2+9x-30\)
\(\Leftrightarrow4x^2-8x-x^2-3x^2-2x-9x=-33\)
\(\Leftrightarrow-19x=-33\)
\(\Leftrightarrow x=\frac{33}{19}\)
\(c,\left(x-1\right)^2+\left(x+3\right)^2=2\left(x-2\right)\left(x+1\right)+38\)
\(\Leftrightarrow x^2-2x+1+x^2+6x+9=2\left(x^2-x-2\right)+38\)
\(\Leftrightarrow6x=25\)
\(\Leftrightarrow x=\frac{25}{6}\)
\(\left(x-3\right)\left(x+5\right)+20\ge4\)
<=> \(x^2+2x-15+20\ge4\)
<=> \(\left(x^2+2x+1\right)+4\ge4\)
<=> \(\left(x+1\right)^2+4\ge4\) luôn đúng
Dấu "=" xảy ra <=> \(x=-1\)
Ta có:
\((x-3)(x+5)+20\geq4\)
\(\Leftrightarrow (x-3)(x+5)\geq-16\)
\(\Leftrightarrow (x-3)x+(x-3)5\geq-16\)
\(\Leftrightarrow x^2-3x+5x-15\geq-16\)
\(\Leftrightarrow x^2+2x-15\geq-16\)
\(\Leftrightarrow x^2-2x\geq-16+15\)
\(\Leftrightarrow x^2-2x\geq-1\)
\(\Leftrightarrow x(x-2)\geq-1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x(x-2)=-1\)
Mà \(x>x-2\)
\(\Rightarrow\)\(x=1;x-2=-1\)