K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2022

Tiêu cự thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}=\dfrac{1}{30}+\dfrac{1}{18}=\dfrac{4}{45}\)

\(\Rightarrow f=\dfrac{45}{4}=11,25cm\)

Độ cao ảnh:

\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{4,5}{h'}=\dfrac{30}{18}\Rightarrow h'=2,7cm\)

14 tháng 4 2022

Ảnh ảo, cùng chiều và lớn hơn vật.

Ảnh cách thấu kính một đoạn:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{10}=\dfrac{1}{15}+\dfrac{1}{d'}\Rightarrow d'=30cm\)

Chiều cao ảnh:

\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{15}{30}\Rightarrow h'=6cm\)

18 tháng 4 2023

a) Bạn tự vẽ hình.

b) Hình minh họa : 

Thấu kính phân kỳ, Cách dựng ảnh của thấu kính phân kỳ và Bài tập vận dụng - Vật lý 9 bài 45

Xét \(\Delta FA'B'\sim\Delta FOI\) có : \(\dfrac{A'B'}{OI}=\dfrac{A'F}{OF}\Leftrightarrow\dfrac{A'B'}{AB}=\dfrac{OF-OA'}{OF}\)

\(\Rightarrow\dfrac{h'}{3}=\dfrac{15-d'}{15}\left(1\right)\)

Xét \(\Delta OA'B'\sim\Delta OAB\) có : \(\dfrac{A'B'}{AB}=\dfrac{OB'}{OB}\Leftrightarrow\dfrac{h'}{3}=\dfrac{d'}{30}\left(2\right)\).

Từ (1) và (2), ta có hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{h'}{3}=\dfrac{15-d'}{15}\\\dfrac{h'}{3}=\dfrac{d'}{30}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d'=10\left(cm\right)\\h'=1\left(cm\right)\end{matrix}\right.\).

Vậy : Ảnh A'B' cách thấu kính \(d'=10\left(cm\right)\) và cao \(h'=1\left(cm\right)\)

Ảnh thật, ngược chiều và lớn hơn vật.

Vị trí đặt ảnh:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{20}=\dfrac{1}{30}+\dfrac{1}{d'}\Rightarrow d'=60cm\)

Chiều cao ảnh:

\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{4,5}{h'}=\dfrac{30}{60}\Rightarrow h'=9cm\)

26 tháng 4 2022

b) Ảnh A'B' là ảnh ảo, cùng chiều và nhỏ hơn vật AB.

c) \(\Delta OAB~\Delta OA'B'\Rightarrow\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\Rightarrow\dfrac{30}{OA'}=\dfrac{5}{A'B'}\Rightarrow\dfrac{6}{OA'}=\dfrac{1}{A'B'}\) (1)

\(\Delta FOI~\Delta FA'B'\Rightarrow\dfrac{OF}{FA'}=\dfrac{OI}{A'B'}\Rightarrow\dfrac{15}{OF-OA'}=\dfrac{AB}{A'B'}\)\(\Rightarrow\dfrac{15}{15-OA'}=\dfrac{5}{A'B'}\Rightarrow\dfrac{3}{15-OA'}=\dfrac{1}{A'B'}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{6}{OA'}=\dfrac{3}{15-OA'}\Rightarrow\dfrac{2}{OA'}=\dfrac{1}{15-OA'}\Rightarrow30-2OA'=OA'\)\(\Rightarrow3OA'=30\Rightarrow OA'=10\left(cm\right)\)

\(\Rightarrow\dfrac{6}{10}=\dfrac{1}{A'B'}\Rightarrow A'B'=\dfrac{10}{6}\approx1,667\left(cm\right)\)

Vậy khoảng cách từ ảnh tới thấu kính là 10cm, chiều cao của ảnh là khoảng 1,667cm.