K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

\(ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)\)

\(=a^3b-ab^3+b^3c-bc^3-ca\left(a^2-c^2\right)\)

\(=b\left(a^3-c^3\right)-b^3\left(a-c\right)-ca\left(a-c\right)\left(a+c\right)\)

\(=b\left(a-c\right)\left(a^2+ac+c^2\right)-b^3\left(a-c\right)-ca\left(a-c\right)\left(a+c\right)\)

\(=\left(a-c\right)\left(a^2b+abc+bc^2-b^3-a^2c-c^2a\right)\)

\(=\left(a-c\right)\left[b\left(a^2-b^2\right)+ac\left(b-a\right)+c^2\left(b-a\right)\right]\)

\(=\left(a-c\right)\left[b\left(a-b\right)\left(a+b\right)-ac\left(a-b\right)-c^2\left(a-b\right)\right]\)

\(=\left(a-c\right)\left(a-b\right)\left(ab+b^2-ac-c^2\right)\)

\(=\left(a-c\right)\left(a-b\right)\left[a\left(b-c\right)+\left(b-c\right)\left(b+c\right)\right]\)

\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\left(a+b+c\right)\)

26 tháng 8 2017

bn muốn hỏi gì vậy ????

26 tháng 8 2017

nhưng sao ra đc nhận tủ chung chứ

dòng thứ 3 ý

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2023

Lời giải:

Đặt $a+b+c=x; ab+bc+ac=y$. Khi đó:
\(A=\frac{(x^2-2y)x^2+y^2}{x^2-y}=\frac{(x^2-y)x^2+y^2-x^2y}{x^2-y}\)

\(=\frac{(x^2-y)x^2-y(x^2-y)}{x^2-y}=\frac{(x^2-y)(x^2-y)}{x^2-y}=x^2-y\)

$=(a+b+c)^2-(ab+bc+ac)=a^2+b^2+c^2+ab+bc+ac$

12 tháng 7 2018

a b<a+b> <a-b> +  bc < b - c> < b + c >+ ca < c - a > < c + a>

a² b+ ab² + a² b - ab²  + b² c -bc²  +b² c + bc²  + c² a -ca²  + c² a +ca² 

<a² b +a² b> + < ab² - ab² > + < b²c + b² c > + <-bc² + bc² > + < c² a +c² a> + <-ca² + ca² >

2 a² b + 2 b² c +2 c² a

XONG NHA NGƯỜI ANH EM

NV
21 tháng 1

Phân thức có nghĩa khi a;b;c không đồng thời bằng 0

Khi đó:

\(\dfrac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(=\dfrac{\left(a^2+b^2+c^2\right)^2+2\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(=\dfrac{\left(a^2+b^2+c^2+ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(=a^2+b^2+c^2+ab+bc+ca\)