K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

S = 1 2 .2.3. sin 120 ° + 1 2 .3.4. sin 120 ° + 1 2 .4.2. sin 120 ° = 13 3 2

ĐÁP ÁN B

27 tháng 8 2019

Hình lục giác đã cho là hợp của 2 tam giác đều có độ dài cạnh là 4 và 1 hình chữ nhật với độ dài 2 cạnh là 4 và 6.

 Diện tích mỗi tam giác đều là 1 2 .4.4. sin 60 ° = 4 3 .

Diện tích hình chữ nhật là 24.

Diện tích của hình lục giác là: 4 3 + 4 3 + ​​ 24 = 8 3 + 24  

ĐÁP ÁN D

20 tháng 8 2017

Diện tích phần được tô màu bằng hiệu diện tích của hình vuông cạnh 8cm và 4 tam giác bằng nhau có 1 cạnh bằng 8 và đường cao ứng với cạnh đó bằng 2 cm.

Diện tích của 1 tam giác là:  S = 1 2 .2.8 = 8

Diện tích hình vuông là:   S ’   =   8 2   =   64

Diện tích phần tô đậm là:  64 – 4.8 =  32.

ĐÁP ÁN B

NV
18 tháng 3 2021

\(AC=\sqrt{AB^2+BC^2-2AB.BC.cosB}=\sqrt{9^2+12^2-2.9.12.cos60^0}=3\sqrt{13}\)

10 tháng 10 2023

loading...  loading...  

NV
24 tháng 12 2020

\(S=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)

\(=\dfrac{1}{2}\left|\left(2-1\right)\left(-8+5\right)-\left(13-1\right)\left(1+5\right)\right|=\dfrac{75}{2}\)

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?A. 6     B.12       C.9         D.15Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?A.10     B.\(\sqrt{84}\)  C.42       D.15Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)Câu 4: Tam giác với ba cạnh là 5, 12, 13...
Đọc tiếp

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?

A. 6     B.12       C.9         D.15

Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?

A.10     B.\(\sqrt{84}\)  C.42       D.15

Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?

A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)

Câu 4: Tam giác với ba cạnh là 5, 12, 13 có bán kính đường tròn ngoại tiếp bằng bao nhiu ?

A. 6        b. 8     C.\(\frac{13}{2}\)D.\(\frac{11}{2}\)

Câu 5. Tam giác với ba cạnh 3,4,5 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiu?

A.1       b.\(\sqrt{2}\)        c. \(\sqrt{3}\)        D.2   

Câu 6: Cho tam giác ABC có a+b2 -c2 > 0. Khi đó góc C là ?

A. Góc C > 90 độ       B. Góc C < 90 độ    C.Góc C = 90  độ             D. Không có kết luận

Dạ e xin chào các anh, chị. Em mong anh/chị hãy giúp e làm bài ở trên và chỉ em cách làm ra được đáp án đó. Em xin chân thành

cảm ơn rất nhiều . Vì em sắp thi rồi nên một số câu hỏi e vẫn không làm được . Mong a/c giúp e nhiệt tình nha ^-^

0
25 tháng 9 2023

Tham khảo:

 

a) Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\ \Rightarrow \left\{ \begin{array}{l}\cos A = \frac{{{{10}^2} + {{13}^2} - {8^2}}}{{2.10.13}} = \frac{{41}}{{52}} > 0;\\\cos B = \frac{{{8^2} + {{13}^2} - {{10}^2}}}{{2.8.13}} = \frac{{133}}{{208}} > 0\\\cos C = \frac{{{8^2} + {{10}^2} - {{13}^2}}}{{2.8.10}} =  - \frac{1}{{32}} < 0\end{array} \right.\end{array}\)

\( \Rightarrow \widehat C \approx 91,{79^ \circ } > {90^ \circ }\), tam giác ABC có góc C tù.

b) 

+) Áp dụng định lí cosin trong tam giác ACM, ta có:

\(\begin{array}{l}A{M^2} = A{C^2} + C{M^2} - 2.AC.CM.\cos C\\ \Leftrightarrow A{M^2} = {8^2} + {5^2} - 2.8.5.\left( { - \frac{1}{{32}}} \right) = 91,5\\ \Rightarrow AM \approx 9,57\end{array}\)

+) Ta có: \(p = \frac{{8 + 10 + 13}}{2} = 15,5\).

Áp dụng công thức heron, ta có: \(S = \sqrt {p(p - a)(p - b)(p - c)}  = \sqrt {15,5.(15,5 - 8).(15,5 - 10).(15,5 - 13)}  \approx 40\)

+) Áp dụng định lí sin, ta có:

\(\frac{c}{{\sin C}} = 2R \Rightarrow R = \frac{c}{{2\sin C}} = \frac{{13}}{{2.\sin 91,{{79}^ \circ }}} \approx 6,5\)

c) 

Ta có: \(\widehat {BCD} = {180^ \circ } - 91,{79^ \circ } = 88,{21^ \circ }\); \(CD = AC = 8\)

Áp dụng định lí cosin trong tam giác BCD, ta có:

\(\begin{array}{l}B{D^2} = C{D^2} + C{B^2} - 2.CD.CB.\cos \widehat {BCD}\\ \Leftrightarrow B{D^2} = {8^2} + {10^2} - 2.8.10.\cos 88,{21^ \circ } \approx 159\\ \Rightarrow BD \approx 12,6\end{array}\)

NV
18 tháng 3 2021

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{1}{32}\)

\(\Rightarrow A\approx92^0\)

\(p=\dfrac{AB+AC+BC}{2}=\dfrac{31}{2}\)

\(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\simeq40\)

\(r=\dfrac{S}{p}=\dfrac{80}{31}\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng