Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2+5n-13 chia hết cho n+2
=>n2+2n+3n+6-19 chia hết cho n+2
=>n(n+2)+3(n+2)-19 chia hết cho n+2
=>19 chia hết cho n+2
=>n+2 E Ư(19)={1;-1;19;-19}
=>n E {-1;-3;17;-21}
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
1./ Do 2n + 1 là số lẻ nên n2 - 2n + 4 chia hết cho 2n+1 thì 4(n2 - 2n + 4) cũng chia hết cho 2n + 1 (nhân số 4 chẵn ko tăng thêm ước cho 2n + 1)
mà: B = 4(n2 - 2n + 4) = 4n2 + 4n + 1 - 12n - 6 + 21 = (2n + 1)2 - 6(2n+1) + 21 = (2n + 1)(2n + 1 - 6) +21 = (2n + 1)(2n - 5) + 21
=> B chia hết cho 2n + 1 <=> 21 chia hết cho 2n + 1.
=> 2n + 1 thuộc U (21) = {-21;-7;-3;-1;1;3;7;21}
Khi đó n = -11; -4 ; -2; -1 ; 0 ; 1; 3 ; 10.
2./ C = 2n2 + 8n + 11 = 2n2 +4n + 4n + 8 + 3 = 2n(n + 2) + 4(n + 2) + 3 = (n + 2)(2n + 4) + 3
để 2n2 + 8n + 11 chia hết cho n + 2 thì n + 2 phải là U(3) = {-3; -1; 1; 3)
Khi đó n = -5 ; -3 ; -1 ; 1
\(D=\frac{n-12}{n-5}\)
Ta có :\(D=\frac{n-5-7}{n-5}\)
\(D=\frac{n-5}{n-5}-\frac{7}{n-5}\)
\(\Rightarrow D=1-\frac{7}{n-5}\)
Để \(D\in z\)
\(\Rightarrow7⋮n-5\)
\(\Rightarrow n-5\inƯ\left(7\right)=\left(-7;7;1;-1\right)\)
\(\Rightarrow n\in\left(-2;12;6;4\right)\)
Vậy để \(D\in Z\)
thì \(n\in\left(-2;12;6;4\right)\)
\(E=\frac{2n+14}{n+4}\)
\(E=\frac{2n+8+6}{n+4}=\frac{2\left(n+4\right)+6}{n+4}\)
\(E=2+\frac{6}{n+4}\)
suy ra để \(\frac{2n+13}{n+4}\in Z\)
thì \(6⋮n+4\)
Vậy \(n+4\inƯ\left(6\right)=\left(-6;6;3;-3;2;-2;1;-1\right)\)
\(\Rightarrow n\in\left(-10;2;-1;-7;-2;-3;-5\right)\)
Vậy để \(E\in Z\)
thì \(n\in\left(-10;2;-1;-7;-2;-3;-5\right)\)
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????///????????