Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (x+1)2008+(y-1)2006=0
Mà (x+1)2008>=0, mọi x thuộc R
(y-1)2006>=0 mọi y thuộc R
=>\(\hept{\begin{cases}x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
Thay x=-1; y=1 vào btđs... ta được:
5.(-1)10-115+2007=5-1+2007
=2011
Vậy gt của btđs là 2011 tại x=-1;y=1.
Theo đề bài ta có:
(x+1)^2008+(y-1)^2006=0
=>\(\hept{\begin{cases}x+1=0\\y-1=0\end{cases}}=>\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Theo đề bài ta có:
5x^10-y^15+2007
<=>5x(-1)^10-1^15+2007
<=>5x1-1+2007
<=>5-1+2007
<=>4+2007=2011
\(\left(x+1\right)^{2006}+\left(y-1\right)^{2008}=0\)
\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}\ge0\\\left(y-1\right)^{2008}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^{2006}+\left(y-1\right)^{2008}\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}=0\\\left(y-1\right)^{2008}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Thay vào C ta có:
\(C=5.\left(-1\right)^{10}-1^{15}+2007\)
\(=5-1+2007=2011\)
(x+1)2006+(y-1)2008=0
=> (x+1)2006=(y-1)2008=0
=>x+1=y-1=0
=>x=-1 và y=1
C=5x10-y15+2007=5.(-1)10-115+2007=2011
(x + y) 2006 + 2007 (y - 1) = 0
=> (x + y) 2006 = 0 và 2007 (y - 1) = 0
=> x + y = 0 và y - 1 = 0
=> x + y = 0 và y = 0 + 1 = 1
=> x + 1 = 0 và y = 1
=> x = 0 - 1 = -1 và y = 1
(x - y - 5) + 2007 (y - 3) 2008 = 0
=> (x - y - 5) = 0 và 2007 (y - 3) 2008 = 0
=> x - y = 0 + 5 = 5 và (y - 3)2008 = 0
=> x - y = 5 và y - 3 = 0 => y = 0 + 3 = 3
=> x - 3 = 5 và y = 3
=> x = 5 + 3 = 8 và y = 3
(x - 1) 2 + (y + 3) 2 = 0
=> (x - 1) 2 = 0 và (y + 3) 2 = 0
=> x - 1 = 0 và y + 3 = 0
=> x = 0 + 1 = 1 và y = 0 - 3 = -3
tìm x y thõa mãn đẳng thức
(x+y) ^ 2006 +2007[y-1] = 0
[x-y-5] + 2007(y-3)^ 2008 = 0
(x-1) ^ 2 + (y+3) ^ 2 = 0
Đề như thế này phải ko nhân Shift rồi ấn số 6 là mũ
So sánh: x = 2006/2007 - 2007/2008 + 2008/2009 - 2009/2010.
y = - 1/(2006 × 2007) - 1/(2007 × 2008).
Ta có:
\(x=\dfrac{2006}{2007}-\dfrac{2007}{2008}+\dfrac{2008}{2009}-\dfrac{2009}{2010}\)
\(=\dfrac{2006.2008-2007^2}{2007.2008}+\dfrac{2008.2010-2009^2}{2009.2010}\)
\(=\dfrac{2006.2007+2006-2007^2}{2007.2008}+\dfrac{2008.2009+2008-2009^2}{2009.2010}\)
\(=\dfrac{2007\left(2006-2007\right)+2006}{2007.2008}+\dfrac{2009\left(2008-2009\right)+2008}{2009.2010}\)
\(=\dfrac{-1}{2007.2008}+\dfrac{-1}{2008.2010}< \dfrac{-1}{2006.2007}+\dfrac{1}{2007.2008}\)
\(\Rightarrow x< y\)
Vậy x < y
bạn sai rồi đề bài là y = \(\dfrac{-1}{2006.2007}-\dfrac{1}{2008.2009}\)
chứ ko phải là \(\dfrac{-1}{2006.2007}+\dfrac{1}{2008.2009}\)
suy ra bài làm của bạn là sai hoặc bạn kia chép sai đề bài
đã hơn 3 năm rồi nhưng chưa có ai giải, mà 3 năm rồi bn cx ko cần nx.
\(\left\{{}\begin{matrix}D=5x^{10}-y^{15}+2007\\\left(x+1\right)^{2006}+\left(y-1\right)^{2008}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}\ge0\forall x\\\left(y-1\right)^{2008}\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^{2006}+\left(x-1\right)^{2008}\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}=0\\\left(x-1\right)^{2008}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Thay vào biểu thức ta có:
\(D=5.\left(-1\right)^{10}-1^{15}+2007\)
\(D=5-1+2007\)
\(D=2011\)