Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=(n-1)(n mũ 2 +1)
để p nguyện tố:
1) n-1=1 suy ra n=2 và n mũ 2 +1 nguyên tố =5 (chọn) . p=5
2)n mũ 2 +1 =1 và ....
tương tự thôi
\(D=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(D=\frac{1}{90}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\right)\)
\(D=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
D=1/90 - 1/72 -1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
D=1/90-(1/72+1/56+1/42+1/30+1/20+1/12+1/6+1/2)
D=1/90-(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72)
D=1/90-(1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
D=1/90-(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9)
D=1/90-(1/1-1/9)
D=1/90-8/9
D=(-79/90)
Ta có :
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
Vậy \(S=\frac{125}{26}\)
Chúc bạn học tốt ~
1) \(\frac{3^{2014}.8^{19}}{6^{60}.3^{1955}}=\frac{3^{2014}.\left(2^3\right)^{19}}{\left(2.3\right)^{60}.3^{1955}}=\frac{3^{2014}.2^{57}}{2^{60}.3^{2015}}=\frac{1}{2^3.3}=\frac{1}{24}\)
2) \(5^x+5^{x+1}=150\)
=> 5x(1 + 5) = 150
=> 5x.6 = 150
=> 5x = 25
=> \(x=\pm2\)
3) \(\frac{3}{11.16}+\frac{3}{16.21}+...+\frac{3}{61.66}=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)
\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)=\frac{3}{5}.\frac{5}{66}=\frac{1}{22}\)
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Rightarrow1-\frac{2}{x+1}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+1}=\frac{1}{2016}\)
=> x + 1 = 2016 . 2
=> x + 1 = 4032
=> x = 4031
Vậy x = 4031
Giải:
a) S=52/1.6+52/6.11+52/11.16+52/16.21+52/21.26
S=5.(5.1/6+5/6.11+5/11.16+5/16.21+5/21.26)
S=5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26)
S=5.(1/1-1/26)
S=5.25/26
S=125/26
b) (1-1/2).(1-1/3).(1-1/4).(1-1/5).....(1-1/19).(1-1/20)
=1/2.2/3.3/4.4/5.....18/19.19/20
=1.2.3.4.....18.19/2.3.4.5.....19.20
=1/20
Chúc bạn học tốt!
A=55/11.16+55/16.21+55/21.26+55/26.31+55/31.36+55/36.41
=11.(5/11.16+5/16.21+...+5/36.41)
=11.(1/11-1/16+1/16-1/21+...+1/36-1/41)
=11.(1/11-1/41)
=11.30/451
=30/41
Câu 1:
Giả sử \(\frac{3}{5}< \frac{3+m}{5+m}\)
=) \(3.\left(5+m\right)< 5.\left(3+m\right)\)
=) \(15+3m< 15+5m\) ( Đúng vì \(15=15\)và \(3m< 5m\)) =) Điều giả sử đúng
=) \(\frac{3}{5}< \frac{3+m}{5+m}\)
* Từ điều trên ta suy ra : Nếu \(\frac{a}{b}< 1\)=) \(\frac{a}{b}< \frac{a+m}{b+m}\)
Và nếu \(\frac{a}{b}>1\)=) \(\frac{a}{b}>\frac{a+m}{b+m}\)
Câu 2 :
= \(5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
= \(5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
= \(5.\left(\frac{1}{1}-\frac{1}{31}\right)\)= \(5.\frac{30}{31}=\frac{150}{31}\)
=> Với mọi số tự nhiên m ( như m\(\ne\)0 ) thì \(\frac{3}{5}< \frac{3+m}{5+m}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(=5\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)\)
\(=5.\frac{30}{31}\)
\(=\frac{150}{31}\)
\(D=\frac{3}{11\cdot16}+\frac{3}{16\cdot21}+\frac{3}{21\cdot26}+....+\frac{3}{61\cdot66}\)
\(\frac{5}{3}D=\frac{5}{3}\left(\frac{3}{11\cdot16}+\frac{3}{16\cdot21}+\frac{3}{21\cdot26}+.....+\frac{3}{61\cdot66}\right)\)
\(\frac{5}{3}D=\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+\frac{5}{21\cdot26}+....+\frac{5}{61\cdot66}\)
\(\frac{5}{3}D=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+....+\frac{1}{61}-\frac{1}{66}\)
\(\frac{5}{3}D=\frac{1}{11}-\frac{1}{66}\)
\(\frac{5}{3}D=\frac{5}{66}\)
\(D=\frac{5}{66}:\frac{5}{3}=\frac{5}{66}\cdot\frac{6}{5}=\frac{1}{11}\)
D = 3/11.16 + 3/16.21 + 3/21.26 + ...... + 3/61.66
D = \(\frac{3}{5}\) . ( \(\frac{5}{11.16}\)+ \(\frac{5}{16.21}\)+......+\(\frac{5}{61.66}\) )
D = \(\frac{3}{5}\). ( \(\frac{1}{11}\)- \(\frac{1}{16}\) + \(\frac{1}{16}\)- \(\frac{1}{21}\)+ ......... + \(\frac{1}{61}\)- \(\frac{1}{66}\))
D =\(\frac{3}{5}\). ( \(\frac{1}{11}\)- \(\frac{1}{66}\))
D = \(\frac{3}{5}\). \(\frac{5}{66}\)
D = \(\frac{1}{22}\)
# HOK TỐT #