K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có một vài nguyên tắc cơ bản để học thuộc bảng chữ cái hiragana một cách hiệu quả theo phương pháp của chúng tôi mà bạn cần chú ý:

1. Cách ghi nhớ:bảng chữ cái tiếng Nhật hiragana tương đối đơn giản (ít nhất là so với Kanji), cách ghi nhớ dựa trên hình ảnh sẽ là một biện pháp hoàn hảo. Mỗi chữ hiragana sẽ được biểu tượng hóa bằng một hình ảnh nhất định. Có thể một vài bạn sẽ nghĩ việc này rất mất thời gian, nhưng các bạn sẽ phải bất ngờ với hiệu quả mà phương pháp này đem lại.

2. Không viết ra: Trong thời đại này, hầu hết việc giao tiếp giữa người với người đều được thực hiện bằng cách gõ bàn phím, nhu cầu viết tay đã giảm đi rất nhiều. Việc học chữ hiragana cũng vậy, học thông qua việc “đọc” sẽ có hiệu quả hơn và nhanh hơn việc học bằng cách viết tay từ hai đến ba lần.

3. Luyện tập: Khi học bất kỳ cái gì đó mới, bạn luôn cần luyện tập. Khi luyện tập, hãy cố gắng nhất có thể gợi nhớ lại những gì bạn đã được học, ngay cả khi bạn nghĩ rằng mình không thể đưa ra câu trả lời. Bạn càng nỗ lực, cố gắng để nhớ ra một điều gì đó, ký ức não bộ sẽ được kích thích mạnh hơn và bạn sẽ ghi nhớ được lâu hơn.

0
Mỗi sáng thức dậy bạn có hai sự lựa chọn: một là ngủ tiếp để mơ về giấc mơ bạn đang mơ dở, hai là thức dậy và biến ước mơ ấy thành hiện thực. Bạn có biết bạn sẽ có thêm bao nhiêu thời gian nếu mỗi ngày chỉ cần dậy sớm một giờ đồng hồ? Với nhiêu đó thời gian, chúng ta thậm chí có thể sống thêm một cuộc đời khác. Hồi trước tôi đã từng thức khuya đến tận 1,2...
Đọc tiếp

Mỗi sáng thức dậy bạn có hai sự lựa chọn: một là ngủ tiếp để mơ về giấc mơ bạn đang mơ dở, hai là thức dậy và biến ước mơ ấy thành hiện thực.

Bạn có biết bạn sẽ có thêm bao nhiêu thời gian nếu mỗi ngày chỉ cần dậy sớm một giờ đồng hồ? Với nhiêu đó thời gian, chúng ta thậm chí có thể sống thêm một cuộc đời khác.

Hồi trước tôi đã từng thức khuya đến tận 1,2 giờ sáng để làm nốt phần việc dang dở. Sau một thời gian, tôi cảm thấy sức khỏe yếu dần và hiệu quả công viêc giảm sút, vì thể tôi bắt đầu thay đổi. Tôi ngủ sớm để dậy sớm, từ 6 giờ sáng nhưng vẫn tin rằng mình có thể dậy sớm hơn nữa. Vậy nên tôi rèn thói quen để có thể dậy sớm hơn 1 tiếng, nghĩa là từ 5 giờ và có hôm bài nhiều là 4 giờ.

Thức dậy lúc 5 giờ tôi có đủ thời gian để làm rất nhiều việc. Đầu tiên sẽ là ôn tập lại bài cho ngày mới, sau đó dành thời gian tập gym tại phòng tập gần nhà. Vì thế tôi đảm bảo được sức khỏe tốt nhất cho việc học và còn có thời gian chuẩn bị bữa sáng cho cả nhà nữa chứ.🙄 🙄 🙄 🙄 🙄

Để rèn luyện thói quen thức dậy sớm bạn cần làm hai việc: một là đi ngủ sớm và hai là biết cách đặt báo thức.

Nhiều người viện cớ thói quen để đi ngủ rất trễ nhưng đôi khi họ lại dành vài tiếng đồng hồ la cà facebook trước khi ngủ nữa. Tôi bắt đầu tập cho mình thói quen ngủ lúc 10 giờ, đôi khi 11 giờ nhưng nhất định không trễ hơn. Vì cả ngày làm việc mệt lại thức dậy sớm nên khoảng giờ ấy cả cơ thể rơi vào trạng thái mệt mỏi đưa tôi vào giấc ngủ một cách dễ dàng.

Nếu như bạn muốn thức dậy sớm hơn, đừng vội vàng đặt báo thức sớm hơn 1 giờ ngay từ lúc đầu. Điều này cần một chiến lược. Bạn nên đặt báo thức sớm hơn 15 phút thôi, sau khi quen rồi thì tăng lên 30 phút, 45 phút và rồi cuối cùng là thêm 1 tiếng.

Bạn cũng nên đặt đồng hồ báo thức hay điện thoại ở xa tầm tay một chút sẽ dễ dàng hơn cho việc thức dậy.
Khi đồng hồ sinh học của bạn quen với nếp giờ mới bạn sẽ thấy thức dậy sớm là một việc cực kì dễ dàng và “đáng đồng tiền bát gạo”. Gần như cứ đúng giờ, cả cơ thể bạn sẽ hoàn toàn tỉnh giấc, ngập tràn năng lượng cho một ngày mới xinh đẹp.

Bất kể bạn là ai và đang ở vị trí nào, tôi tin bạn luôn có thể dậy sớm hơn một giờ đồng hồ để được sống thêm một giờ đồng hồ nữa! 👌 👌 👌 👌 👌

1
25 tháng 12 2018

😆😃a hi hi

📷Tập hợp Mandelbrot, đặt tên theo người đã khám phá ra nó, là một ví dụ nổi tiếng về phân dạng📷Mandelbrot năm 2007📷Xây dựng một bông tuyết Koch cơ bản từ tam giác đềuMột phân dạng (còn được biết đến là fractal) là một vật thể hình học thường có hình dạng gấp khúc trên mọi tỷ lệ phóng đại, và có thể được tách ra thành từng phần: mỗi phần trông giống như hình tổng...
Đọc tiếp

📷Tập hợp Mandelbrot, đặt tên theo người đã khám phá ra nó, là một ví dụ nổi tiếng về phân dạng📷Mandelbrot năm 2007📷Xây dựng một bông tuyết Koch cơ bản từ tam giác đều

Một phân dạng (còn được biết đến là fractal) là một vật thể hình học thường có hình dạng gấp khúc trên mọi tỷ lệ phóng đại, và có thể được tách ra thành từng phần: mỗi phần trông giống như hình tổng thể, nhưng ở tỷ lệ phóng đại nhỏ hơn. Như vậy phân dạng có vô tận các chi tiết, các chi tiết này có thể có cấu trúc tự đồng dạng ở các tỷ lệ phóng đại khác nhau. Nhiều trường hợp, có thể tạo ra phân dạng bằng việc lặp lại một mẫu toán học, theo phép hồi quy. Từ fractal được nói đến lần đầu vào năm 1975 bởi Benoît Mandelbrot, lấy từ tiếng Latin fractus nghĩa là "đứt gãy". Trước đó, các cấu trúc này (ví dụ bông tuyết Koch) được gọi là "đường cong quỷ".

Phân dạng ban đầu được nghiên cứu như một vật thể toán học. Hình học phân dạng là ngành toán học chuyên nghiên cứu các tính chất của phân dạng; những tính chất không dễ gì giải thích được bằng hình học thông thường. Ngành này có ứng dụng trong khoa học, công nghệ, và nghệ thuật tạo từ máy tính. Ý niệm cơ bản của môn này là xây dựng phép đo đạc mới về kích thước của vật thể, do các phép đo thông thường của hình học Euclid và giải tích thất bại khi mô tả các phân dạng.

Mục lục

1Định nghĩa

2Lịch sử

3Tập hợp Mandelbrot

4Ví dụ

4.1Phân dạng tạo từ hình toán học

4.2Vật thể tự nhiên có cấu trúc phân dạng

5Ứng dụng

5.1Khoa học máy tính

5.2Y học và sinh học

5.3Hóa học

5.4Vật lý

5.5Thiên văn học

5.6Kinh tế

6Chú thích

7Tham khảo

8Liên kết ngoài

Định nghĩa[sửa | sửa mã nguồn]

📷

Việc định nghĩa các đặc tính của phân dạng, có vẻ dễ dàng với trực quan, lại cực kỳ khó với đòi hỏi chính xác và cô đọng của toán học.

Mandelbrot đã định nghĩa phân dạng là "một tập hợp mà trong đó số chiều Hausdorff (hay chiều Hausdorff-Besicovitch) lớn hơn chiều tô pô học". Số chiều Hausdorff là khái niệm sinh ra để đo kích thước của phân dạng, thường không phải là một số tự nhiên. Một hình vẽ phân dạng trên tờ giấy 2 chiều có thể bắt đầu có những tính chất của vật thể trong không gian 3 chiều, và có thể có chiều Hausdorff nằm giữa 2 và 3. Đối với một phân dạng hoàn toàn tự đồng dạng, chiều Hausdorff sẽ đúng bằng chiều Minkowski-Bouligand.

Xem thêm: Số chiều Hausdorff

Các vấn đề liên quan đến định nghĩa phân dạng gồm:

Không có ý nghĩa chính xác của "gấp khúc".

Không có định nghĩa duy nhất của "chiều".

Có nhiều cách mà một vật thể có thể tự đồng dạng.

Không phải tất cả mọi phân dạng đều tìm được bằng phép đệ quy.

Lịch sử[sửa | sửa mã nguồn]

Các nhà toán học bắt đầu nghiên cứu các hình tự đồng dạng tự thế kỷ 17, khi Gottfried Leibniz xem xét các đường gấp khúc và định nghĩa đường thằng là đường phân dạng chuẩn: "các đường thẳng là đường cong, bất kỳ phần nào của nó cũng tương tự với toàn bộ".

Năm 1872, nhà toán học người Đức Karl Weierstrass đưa ra mô hình về một hàm liên tục nhưng không đâu khả vi

📷Bông tuyết Koch

Năm 1904, nhà toán học Thụy Điển Helge von Koch trong một bài "Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire" đã nghiên cứu các tính chất của phân dạng tạo thành bắt đầu từ các đa giác đơn lồi phẳng, mà cụ thể là tam giác, có hình dạng na ná rìa của các bông tuyết và được gọi là bông tuyết Koch (Koch snowflake)

Tập hợp Mandelbrot[sửa | sửa mã nguồn]

Bài chi tiết: Tập hợp Mandelbrot📷Hình ảnh đầu tiên của tập Mandelbrot (trên mặt phẳng phức) trong dãy phóng đại với môi trường được tô màu liên tục (các điểm màu đen thuộc về tập này).

Tập Mandelbrot là một tập hợp các điểm nằm trong mặt phẳng phức, với biên của nó có dạng fractal. Tập Mandelbrot là tập các giá trị của số phức c với quỹ đạo bắt đầu từ 0 dưới phép lặp của đa thức bậc hai hệ số phức zn+1 = zn2 + c vẫn bị chặn (đóng trong biên).[1] Có nghĩa là, một số phức c thuộc về tập Mandelbrot, khi bắt đầu với z0 = 0 và áp dụng phép lặp lại, thì giá trị tuyệt đối của zn không bao giờ vượt quá một số xác định (số này phụ thuộc vào c) cho dù n lớn như thế nào. Tập Mandelbrot được đặt tên theo nhà toán học Benoît Mandelbrot, người đầu tiên đã nghiên cứu và phát triển nó.

Ví dụ, lấy c = 1 thì khi áp dụng chuỗi lặp ta thu được dãy số 0, 1, 2, 5, 26,…, và dãy này tiến tới vô cùng. Hay dãy này không bị chặn, và do vậy 1 không phải là phần tử của tập Mandelbrot.

Ví dụ khác, lấy c = i (trong đó i được định nghĩa là i2 = −1) sẽ cho dãy 0, i, (−1 + i), −i, (−1 + i), −i,..., và dãy này bị chặn nên ithuộc về tập Mandelbrot.

Khi tính toán và vẽ trên mặt phẳng phức, tập Mandelbrot có hình dạng ở biên giống như một fractal, nó có tính chất tự đồng dạng khi phóng đại tại bất kì vị trí nào trên biên của tập hợp.

Tập Mandelbrot đã trở thành phổ biến ở cả bên ngoài toán học, từ vẻ đẹp thẩm mỹ cho tới cấu trúc phức tạp được xuất phát từ định nghĩa đơn giản, và nó cũng là một trong những ví dụ nổi tiếng của đồ họa toán học. Nhiều nhà toán học, bao gồm Mandelbrot, đã phổ biến lĩnh vực toán học này ra công chúng. Đây là một trong những tập hợp phân dạng nổi tiếng nhất.

Ví dụ[sửa | sửa mã nguồn]

Phân dạng tạo từ hình toán học[sửa | sửa mã nguồn]

📷Một phân dạng Mandelbrot zn+1 = zn2 + c

📷Phân dạng trông giống bông hoa

📷Một phân dạng của tập hợp Julia

📷Một phân dạng Mandelbrot khác

Vật thể tự nhiên có cấu trúc phân dạng[sửa | sửa mã nguồn]

📷Kéo hai tấm nhựa trong suốt có dính keo ra khỏi nhau, ta có được một cấu trúc phân dạng.

📷Phóng điện cao thếtrong một khối nhựa trong suốt, ta thu được hình Lichtenberg có cấu trúc phân dạng.

📷Các vết nứt có cấu trúc phân dạng trên bề mặt đĩa DVD, sau khi đưa đĩa này vào lò vi sóng

📷Súp lơ xanh Romanescocó những cấu trúc phân dạng tự nhiên

Ứng dụng[sửa | sửa mã nguồn]

Hình học Phân dạng có nhiều ứng dụng trong cuộc sống và mở ra nhiều hướng nghiên cứu mới trong nhiều lĩnh vực như sinh học, y học, thiên văn, kinh tế, công nghệ thông tin...

Khoa học máy tính[sửa | sửa mã nguồn]

Hình học Phân dạng có thể giúp thiết kế các hình ảnh đẹp trên máy tính một cách đơn giản và trực quan. Đây là một trong những lĩnh vực được nhiều người quan tâm, nhất là đối với những người yêu mến nghệ thuật. Cơ sở hình học Fractal cũng đã được ứng dụng trong công nghệ nén ảnh một cách hiệu quả thông qua các hệ hàm lặp (IFS), đây là một trong những lĩnh vực được các chuyên gia về khoa học máy tính đặc biệt quan tâm.

Phương pháp nén phân dạng là một phương pháp nén dữ liệu có mất mát thông tin cho ảnh số dựa trên phân dạng. Phương pháp này thích hợp nhất cho các ảnh tự nhiên dựa vào tính chất các phần của một bức ảnh thường giống với các phần khác của chính bức ảnh đó. Thuật toán phân dạng chuyển các phần này thành dữ liệu toán học được gọi là "mã phân dạng" và mã này được dùng để tái tạo lại bức ảnh đã được mã hóa. Đại diện của ảnh phân dạng được mô tả một cách toán học như là hệ thống các hàm lặp (IFS).

Như đã biết, với một ánh xạ co trên một không gian metric đầy đủ, luôn tồn tại một điểm bất động. Mở rộng kết quả này cho một họ các ánh xạ co, người ta chứng minh được với một họ ánh xạ như vậy luôn tồn tại một điểm bất động. Để ý rằng với một ánh xạ co, ta luôn tìm được điểm bất động của nó bằng cách lấy một giá trị khởi đầu rồi lặp lại nhiều lần ánh xạ đó trên các kết quả thu được của mỗi lần lặp. Số lần lặp càng nhiều thì giá trị tìm được càng xấp xỉ chính xác giá trị của điểm bất động. Do đó nếu ta coi ảnh cần nén là "điểm bất động" của một họ các ánh xạ co thì mỗi ảnh ta chỉ cần lưu thông tin về họ ánh xạ thích hợp, điều này sẽ làm giảm đi rất nhiều dung lượng cần có để lưu trữ thông tin ảnh.

Y học và sinh học[sửa | sửa mã nguồn]

Các nhà khoa học đã tìm ra các mối quan hệ giữa phân dạng với hình thù của tế bào, quá trình trao đổi chất của cơ thể người, AND, nhịp tim, … Trước đây, các nhà sinh học quan niệm lượng chất trao đổi phụ thuộc vào khối lượng cơ thể người, nghĩa là nó tỉ lệ bậc 3 khi xem xét con người là một đối tượng 3 chiều. Nhưng với góc nhìn từ hình học phân dạng, người ta cho rằng sẽ chính xác hơn nếu xem con người là một mặt phân dạng với số chiều xấp xỉ 2.5, như vậy tỉ lệ đó không nguyên nữa mà là một số hữu tỷ. Việc chẩn đoán bệnh áp dụng hình học phân dạng đã có những tiến bộ rõ rệt. Bằng cách quan sát hình dạng của các tế bào theo quan điểm phân dạng, người ta đã tìm ra các bệnh lý của con người, tuy nhiên những lĩnh vực này vẫn còn mới mẻ, cần phải được tiếp tục nghiên cứu.

Hóa học[sửa | sửa mã nguồn]

Hình học Phân dạng được sử dụng trong việc khảo sát các hợp chất cao phân tử. Tính đa dạng về cấu trúc polymer thể hiện sự phong phú về các đặc tính của hợp chất cao phân tử chính là các phân dạng. Hình dạng vô định hình, đường bẻ gãy, chuỗi, sự tiếp xúc của bề mặt polyme với không khí… đều có liên quan đến các phân dạng. Sự chuyển động của các phân tử, nguyên tử trong hợp chất, dung dịch, các quá trình tương tác gần giữa các chất với nhau,… đều có thể xem như một hệ động lực hỗn độn (chaos).

Vật lý[sửa | sửa mã nguồn]

Trong vật lý, khi nghiên cứu các hệ cơ học có năng lượng tiêu hao (chẳng hạn như có lực ma sát) người ta cũng nhận thấy trạng thái của các hệ đó khó xác định trước được và hình ảnh hình học của chúng là các đối tượng phân dạng.

Thiên văn học[sửa | sửa mã nguồn]

Các nhà khoa học đã tiến hành xem xét lại các quỹ đạo của các hành tinh trong hệ mặt trời cung như trong các hệ thiên hà khác. Một số kết quả cho thấy không phải các hành tinh này quay theo một quỹ đạo Ellipse như trong hình học Euclide mà nó chuyển động theo các đường phân dạng. Quỹ đạo của nó được mô phỏng bằng những quỹ đạo trong các tập hút "lạ".

Kinh tế[sửa | sửa mã nguồn]

Mô tả sự biến động của giá cả trên thị trường chứng khoán bằng các đồ hình phân dạng sẽ cho phép chúng ta theo dõi sự biến động của giá cả. Trên cơ sở đó dự báo giá cả trên thị trường dựa theo các luật của hình học phân dạng.

0
Lần đầu viết chuyện, không hay nhể, một câu chuyện có thật của ai đó. ... Không có đềNgày hôm đó, tôi đến trường học, ngôi trường mới của tôi. Tôi đã gặp anh, đối với tôi lúc đó, anh chỉ như bao người con trai khác-đáng ghét. Nhưng nhìn anh khá quen, hình như tôi đã gặp anh ở đâu thì...
Đọc tiếp

Lần đầu viết chuyện, không hay nhể, một câu chuyện có thật của ai đó. ...

Không có đề
Ngày hôm đó, tôi đến trường học, ngôi trường mới của tôi. Tôi đã gặp anh, đối với tôi lúc đó, anh chỉ như bao người con trai khác-đáng ghét. Nhưng nhìn anh khá quen, hình như tôi đã gặp anh ở đâu thì phải. Sau đấy vài hôm, tôi để ý rằng, cách anh cư xử với tôi khác với những người con gái khác. Anh đối xử với họ thì như thưởng, người lạ. Rõ ràng tôi cũng vậy mà anh lại quan tâm tôi, mỗi khi tôi buồn thì anh chọc ghẹo, làm tôi tức và vui. Chuyện gì đang xảy ra vậy? Có những người khác xinh hơn tôi, tốt hơn tôi, việc gì anh phải để ý đến tôi?
Sau khoảng 1 tháng đi học, anh đi cùng đường với tôi, đã gặp nhau. Anh lướt qua tôi, tôi chỉ nghĩ là đi qua thôi, chả có gì cả. Nhưng bỗng anh dừng lại, có vẻ như chờ cái gì. Hóa ra anh trờ tôi đến, hỏi tôi:'' Có muốn đến trường cùng anh không? Anh cũng đến trường '' Chẳng là hôm đó, tôi và anh cùng đến trường tập kịch. Tôi kịch văn, anh kịch tiếng anh, trường cũng không đông nên có lẽ anh mới mạnh bạo như vậy. Xong tôi từ chối, nhìn vẻ mặt anh lúc đó khá buồn nhưng cũng phóng đến trường, tất nhiên mà trước tôi.
Đến ngày 24/12, ngày Noel. Suốt một buổi sáng, anh gọi tôi đến chỗ anh để hỏi điều gì. Tôi cũng đâu có lại. Tan học, cùng đường mà, lại gặp nhau, anh đang đi cùng bạn, hỏi nhỏ với tôi là đi chơi không? Tôi lơ ngơ không hiểu, hỏi cái gì cơ. Chắc anh bực mình, chậc một cái rồi đi trước. Chiều hôm đấy, trên đường đi học lại gặp, hóa ra những gì anh hỏi lúc sáng là đi chơi Noel không. Tôi cũng từ chối. Mặc dù khá vui khi lần đầu tiên có người con trai nào dủ tôi đi chơi Noel. 
Càng ngày, anh càng quan tâm tôi, tôi cũng để ý anh nhiều hơn. Bỗng một ngày, tôi chợt nhận ra: Tôi thích anh mất rồi!!! Chuyện gì thế này, tôi vốn là người con gái không biết yêu là gì, vậy mà ...Thật sự, tôi không thể hiểu được là tại sao nữa. Anh khiến tôi rung động. Tôi không thể kể với ai, không thể tâm sự với ai cả. Đành dấu kín trong lòng. Nhưng anh cuối cấp, anh ra trường đúng lúc tôi thích anh. Một nỗi buồn rất lớn. Tôi không thể làm gì hơn ngoài việc khóc vào mỗi tối, việc này giống như mới chia tay người yêu vậy. Cô đơn, một mình chịu nỗi khổ tâm, chẳng ai biết chuyện này cả. Tôi không biết làm thế nào để quen anh nữa. Mỗi lần sắp quên thì anh lại xuất hiện, không thể tránh được anh. Tôi không biết làm thế nào để hết thích anh nữa. Và một câu hỏi nữa là: Liệu, anh có thích tôi không?
                    Tôi không dám nói ra vì sợ.
                    Sợ anh biết tôi thích anh.
                   Cũng sợ anh không biết là tôi thích anh.
                   Chuyện gì đang xảy ra với tôi vậy?
#Moon

0
~ TIN SỐC ~Khoa học chứng minh: THƯỜNG XUYÊN NGẮM TRAI ĐẸP mang lại 5 điều ‘thần kỳ’ cho chị em, đặc biệt là TRÍ NHỚNgắm trai đẹp giúp phụ nữ cải thiện trí nhớCác nhà khoa học đã tiến hành một nghiên cứu thú vị để tìm ra mối liên quan giữa việc ngắm trai đẹp và khả năng ghi nhớ của não bộ. Kết quả cuối cùng đã khiến mọi người rất bất ngờ, bởi việc ngắm trai đẹp...
Đọc tiếp

~ TIN SỐC ~

Khoa học chứng minh: THƯỜNG XUYÊN NGẮM TRAI ĐẸP mang lại 5 điều ‘thần kỳ’ cho chị em, đặc biệt là TRÍ NHỚ

Ngắm trai đẹp giúp phụ nữ cải thiện trí nhớ

Các nhà khoa học đã tiến hành một nghiên cứu thú vị để tìm ra mối liên quan giữa việc ngắm trai đẹp và khả năng ghi nhớ của não bộ. Kết quả cuối cùng đã khiến mọi người rất bất ngờ, bởi việc ngắm trai đẹp thực sự có thể gia tăng đáng kể trí nhớ của các chị em.

Các nhà nghiên cứu đã công bố kết quả thí nghiệm trên tờ Evolutionary Psychology.

Cụ thể, các nhà khoa học đã tiến hành thử nghiệm trên 58 sinh viên nữ. Những cô gái này sẽ được nhìn vào 10 chàng trai đẹp trước mặt trong vòng 10 giây. Tuy nhiên, chỉ một nửa trong số các cô gái được chọn làm thử nghiệm được nhìn các anh chàng điển trai, nửa còn lại sẽ được sắp xếp đứng trước mặt những anh chàng với nhan sắc kém hơn một chút.

Người ta sẽ kể cho 58 cô gái này nghe một câu chuyện trong khi họ đang chăm chú nhìn ngắm các anh chàng điển trai. Câu chuyện đó có nội dung mang nhiều chi tiết mà người nghe cần chú ý tỉ mỉ mới có thể nhớ được. Sau khi kết thúc thử nghiệm, kết quả rất đáng ngạc nhiên.

Những cô gái trong nhóm được ngắm “mỹ nam” sẽ nhớ được câu chuyện tốt hơn, thậm chí thuật lại được một vài chi tiết cực nhỏ nhặt của câu chuyện đó. Tuy nhiên, kết quả có vẻ như không mấy khả quan với nhóm người còn lại, bởi họ thậm chí còn không kể ra được nội dung chính của câu chuyện mà mình vừa được nghe.

Những lợi ích tuyệt vời khác khi ngắm trai đẹp

Xả stress hiệu quả

Phản ứng của hầu hết các các bạn nữ khi nhìn thấy một bạn trai bảnh bao, ưa nhìn thường là sự thích thú, vui sướng… Những cảm xúc này xuất hiện một cách bất ngờ sẽ giúp làm gia tăng lượng hormone serotonin trong cơ thể.

Thông qua đó, nó có thể giúp chúng ta giảm đi sự căng thẳng, lo âu và xả stress một cách rất hiệu quả.. Nó có thể giúp tâm trạng của phái nữ trở nên vui vẻ hơn, làm gia tăng nụ cười.

Nhờ đó, chúng ta có thể giải phóng nỗi buồn một cách nhanh chóng hơn, có được hệ miễn dịch tốt hơn, thậm chí còn giúp cung cấp năng lượng cho cơ thể nữa đấy!

Có lợi cho tiêu hóa

Những cảm xúc tích cực cùng sự vui vẻ và nụ cười có tác động rất lớn đến hệ tiêu hóa. Nó giúp cho lượng máu trong cơ thể di chuyển nhanh hơn, thúc đẩy quá trình thải độc, làm sạch cơ thể và giúp hệ tiêu hóa hoạt động tốt hơn.

Cùng với đó, những phản ứng của cơ thể sẽ tiếp thêm sinh lực cho các hoạt động trao đổi chất, làm gia tăng quá trình đốt cháy năng lượng.

Tốt cho tim mạch

Sự thích thú, hào hứng mỗi khi nhìn thấy những anh chàng đẹp trai chính là “liều thuốc” rất tốt cho hệ tim mạch của nữ giới.

Nó có khả năng làm hạn chế những ảnh hưởng xấu từ các hoạt chất gây tăng huyết áp và làm mạch máu giãn nở chậm như adrenaline và noradrenaline. Đồng thời, nó còn có tác dụng ngăn ngừa các nguy cơ về đột quỵ hay trụy tim.

Kéo dài tuổi thọ

Theo một thống kê của các chuyên gia, việc ngắm nhìn cái đẹp cũng tương tự như việc tập thể dục nhịp điệu, giúp tăng lưu lượng máu trong cơ thể, giúp thư giãn, giải tỏa sự căng thẳng, lo âu… Nhờ vậy mà cơ thể được kéo dài thêm tuổi thọ.

~ xin lỗi nha! tuy mình ko thích ngắm trai lắm nhưng ko thể tin đc~

0
~ TIN SỐC ~Khoa học chứng minh: THƯỜNG XUYÊN NGẮM TRAI ĐẸP mang lại 5 điều ‘thần kỳ’ cho chị em, đặc biệt là TRÍ NHỚ Ngắm trai đẹp giúp phụ nữ cải thiện trí nhớCác nhà khoa học đã tiến hành một nghiên cứu thú vị để tìm ra mối liên quan giữa việc ngắm trai đẹp và khả năng ghi nhớ của não bộ. Kết quả cuối cùng đã khiến mọi người rất bất ngờ, bởi...
Đọc tiếp

~ TIN SỐC ~

Khoa học chứng minh: THƯỜNG XUYÊN NGẮM TRAI ĐẸP mang lại 5 điều ‘thần kỳ’ cho chị em, đặc biệt là TRÍ NHỚ

Ngắm trai đẹp giúp phụ nữ cải thiện trí nhớ

Các nhà khoa học đã tiến hành một nghiên cứu thú vị để tìm ra mối liên quan giữa việc ngắm trai đẹp và khả năng ghi nhớ của não bộ. Kết quả cuối cùng đã khiến mọi người rất bất ngờ, bởi việc ngắm trai đẹp thực sự có thể gia tăng đáng kể trí nhớ của các chị em.

Các nhà nghiên cứu đã công bố kết quả thí nghiệm trên tờ Evolutionary Psychology.

Cụ thể, các nhà khoa học đã tiến hành thử nghiệm trên 58 sinh viên nữ. Những cô gái này sẽ được nhìn vào 10 chàng trai đẹp trước mặt trong vòng 10 giây. Tuy nhiên, chỉ một nửa trong số các cô gái được chọn làm thử nghiệm được nhìn các anh chàng điển trai, nửa còn lại sẽ được sắp xếp đứng trước mặt những anh chàng với nhan sắc kém hơn một chút.

Người ta sẽ kể cho 58 cô gái này nghe một câu chuyện trong khi họ đang chăm chú nhìn ngắm các anh chàng điển trai. Câu chuyện đó có nội dung mang nhiều chi tiết mà người nghe cần chú ý tỉ mỉ mới có thể nhớ được. Sau khi kết thúc thử nghiệm, kết quả rất đáng ngạc nhiên.

Những cô gái trong nhóm được ngắm “mỹ nam” sẽ nhớ được câu chuyện tốt hơn, thậm chí thuật lại được một vài chi tiết cực nhỏ nhặt của câu chuyện đó. Tuy nhiên, kết quả có vẻ như không mấy khả quan với nhóm người còn lại, bởi họ thậm chí còn không kể ra được nội dung chính của câu chuyện mà mình vừa được nghe.

Những lợi ích tuyệt vời khác khi ngắm trai đẹp

Xả stress hiệu quả

Phản ứng của hầu hết các các bạn nữ khi nhìn thấy một bạn trai bảnh bao, ưa nhìn thường là sự thích thú, vui sướng… Những cảm xúc này xuất hiện một cách bất ngờ sẽ giúp làm gia tăng lượng hormone serotonin trong cơ thể.

Thông qua đó, nó có thể giúp chúng ta giảm đi sự căng thẳng, lo âu và xả stress một cách rất hiệu quả.. Nó có thể giúp tâm trạng của phái nữ trở nên vui vẻ hơn, làm gia tăng nụ cười.

Nhờ đó, chúng ta có thể giải phóng nỗi buồn một cách nhanh chóng hơn, có được hệ miễn dịch tốt hơn, thậm chí còn giúp cung cấp năng lượng cho cơ thể nữa đấy!

Có lợi cho tiêu hóa

Những cảm xúc tích cực cùng sự vui vẻ và nụ cười có tác động rất lớn đến hệ tiêu hóa. Nó giúp cho lượng máu trong cơ thể di chuyển nhanh hơn, thúc đẩy quá trình thải độc, làm sạch cơ thể và giúp hệ tiêu hóa hoạt động tốt hơn.

Cùng với đó, những phản ứng của cơ thể sẽ tiếp thêm sinh lực cho các hoạt động trao đổi chất, làm gia tăng quá trình đốt cháy năng lượng.

Tốt cho tim mạch

Sự thích thú, hào hứng mỗi khi nhìn thấy những anh chàng đẹp trai chính là “liều thuốc” rất tốt cho hệ tim mạch của nữ giới.

Nó có khả năng làm hạn chế những ảnh hưởng xấu từ các hoạt chất gây tăng huyết áp và làm mạch máu giãn nở chậm như adrenaline và noradrenaline. Đồng thời, nó còn có tác dụng ngăn ngừa các nguy cơ về đột quỵ hay trụy tim.

Kéo dài tuổi thọ

Theo một thống kê của các chuyên gia, việc ngắm nhìn cái đẹp cũng tương tự như việc tập thể dục nhịp điệu, giúp tăng lưu lượng máu trong cơ thể, giúp thư giãn, giải tỏa sự căng thẳng, lo âu… Nhờ vậy mà cơ thể được kéo dài thêm tuổi thọ.

~ xin lỗi nha! tuy mình ko thích ngắm trai lắm nhưng ko thể tin đc~

1
24 tháng 6 2019

holi

Tô pô hay tô pô học có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm topos (nghĩa là "nơi chốn") và logos (nghiên cứu), là một ngành toán học nghiên cứu các đặc tính còn được bảo toàn qua các sự biến dạng, sự xoắn, và sự kéo giãn nhưng ngoại trừ việc xé rách và việc dán dính. Do đó, tô pô còn được mệnh danh là "hình học của màng cao su". Các đặc tính đó...
Đọc tiếp

Tô pô hay tô pô học có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm topos (nghĩa là "nơi chốn") và logos (nghiên cứu), là một ngành toán học nghiên cứu các đặc tính còn được bảo toàn qua các sự biến dạng, sự xoắn, và sự kéo giãn nhưng ngoại trừ việc xé rách và việc dán dính. Do đó, tô pô còn được mệnh danh là "hình học của màng cao su". Các đặc tính đó gọi là các bất biến tô pô. Khi ngành học này lần đầu tiên tìm ra trong những năm đầu của thế kỉ 20 thì nó vẫn được gọi bằng tiếng Latinh là geometria situs (hình học của nơi chốn) và analysis situs (giải tích nơi chốn). Từ khoảng 1925 đến 1975 nó đã trở thành lãnh vực lớn mạnh quan trọng bậc nhất của toán học.

Thuật ngữ tô pô cũng để chỉ một đối tượng toán học riêng biệt trong ngành. Với ý nghĩa này, một tô pô là một họ của các tập mở mà có chứa tập trống và toàn bộ không gian, và nó đóng dưới các phép hội bất kì và phép giao hữu hạn. Và đây là định nghĩa của một không gian tô pô.

Mục lục

1Giới thiệu

2Lịch sử

3Dẫn nhập sơ khởi

4Toán học tô pô

5Một số định lý tổng quát về tô pô

6Một số đề tài hữu ích về tô pô đại số

7Phác thảo lý thuyết đi sâu hơn

8Tổng quát hóa

9Xem thêm

10Tham khảo

11Liên kết ngoài

Giới thiệu[sửa | sửa mã nguồn]

📷Một tách cà phê trở thành vòng xuyến qua sự biến dạng hình học bảo toàn các bất biến tô pô. Cả tách cà phê và bánh vòng đều có những tính chất tô pô hoàn toàn giống nhau.

Người ta có phát biểu rằng một nhà tô pô học là người mà không thể phân biệt được sự khác nhau giữa một cái vòng xuyến và một ca đựng bia có quai. Vì cả hai đều là vật rắn và có đúng 1 lỗ hổng. Đôi khi tô pô còn được gọi là hình học về miếng cao suvì trong tô pô thì không có sự phân biệt giữa một đường hình vuông với một đường tròn. Đường hình tròn có thể được kéo co giãn để biến dạng thành hình vuông. Tuy nhiên, đường tròn thì hoàn toàn phân biệt với đường hình số 8, bởi vì không thể nào kéo giãn hình tròn để tạo thành hình số 8 mà không đục xé nó ra thêm một lỗ. Các không gian nghiên cứu trong tô pô gọi là các không gian tô pô. Chúng thay đổi từ dạng quen thuộc như không gian thực n chiều cho đến các cấu trúc vô cùng kì lạ.

Như vậy có thể nói một cách nôm na rằng tô pô là một ngành nghiên cứu về đặc tính của các cấu trúc đặc có tính siêu co giãn, siêu biến dạng nhưng lại không thể bị cắt rời thành nhiều mảnh, không thể bị đâm thủng hay bị dán dính vào nhau.

📷Mặt Mobius-một mặt có thể đi sang bên kia mà không phải vòng qua mép

.

Tô pô giới thiệu thêm một ngôn ngữ hình học mới - như là các phức đơn hình (simplicial complex), đồng luân (homotopy), đối đồng điều (cohomology), đối ngẫu Poincaré (Poincaré duality), phân thớ (fibration), không gian vec tơ tô pô (topological vector space), bó(sheaf), lớp đặc trưng (characteristic class), hàm Morse (Morse function), đại số đồng điều (homological algebra), dãy phổ (spectral sequence). Nó đã tạo ra một tác động chính đến các lĩnh vực rộng rãi của hình học vi phân (differential geometry), hình học đại số(algebraic geometry), hệ thống động lực học (dynamical system), phương trình đạo hàm riêng (partial differential equation) và hàm nhiều biến phức (several complex variables). "Hình học", theo cách diễn giải của Michael Atiyah và trường phái của ông ngày nay, bao gồm điều kể trên. Một cách nội hàm, bộ môn này có các lĩnh vực tô pô tập điểm (point-set topology) hay tô pô đại cương(general topology) nghiên cứu về các không gian tô pô mà không có thêm các điều kiện giới hạn; trong khi các lĩnh vực khác lại nghiên cứu các không gian tô pô giống như là các đa tạp (manifold). Những lĩnh vực đó bao gồm tô pô đại số (algebraic topology) - phát triển từ tô pô tổ hợp (combinatorial topology), tô pô hình học (geometric topology), tô pô ít chiều (low-dimensional topology) - chẳng hạn lo về lý thuyết nút (knot theory), và tô pô vi phân (differential topology).

Đây là bài viết tổng quan về tô pô. Để có các khái niệm chính xác toán học, xem thêm bài không gian tô pô hoặc các bài viết trong danh sách dưới đây. Bài thuật ngữ tô pô bao gồm các định nghĩa của các thuật ngữ dùng trong tô pô học.

Lịch sử[sửa | sửa mã nguồn]

Nguồn gốc của tô pô đã được người ta biết đến từ môn hình học trong các nền văn hóa cổ đại. Gottfried Leibniz là người đầu tiên khai thác thật ngữ analysus situs, sau đó các nghiên cứu trong thế kỉ 19 đã dùng như ngày nay là tô pô. Trong tiểu luận của Leonhard Euler về Bảy cầu Königsberg đã viết về các thành quả tô pô.

Từ topology được nhà toán học người Đức Johann Benedict Listing đưa ra sử dụng lần đầu tiên năm 1847 trong Vorstudien zur Topologie, mặc dù ông đã dùng nó từ mười năm trước

Georg Cantor, cha đẻ của lý thuyết tập hợp, đã khởi sự nghiên cứu lý thuyết tập điểm trong các không gian Euclide vào nửa cuối thế kỉ 19 như là một phần của khảo cứu về chuỗi Fourier.

Năm 1895, Henri Poincaré xuất bản tác phẩm Analyis Situs, đã giới thiệu các khái niệm về đồng luân và đồng điều.

Maurice Fréchet, thống nhất các nghiên cứu về không gian hàm của các nhà toán học Cantor, Volterra, Arzelà, Hadamard, Ascoli và những người khác. Ông đã dẫn nhập khái niệm về không gian metric trong năm 1906.

Năm 1914, Felix Hausdorff, tổng quát hóa đặc tính của không gian metric và đặt ra khái niệm "không gian tô pô" đồng thời cung cấp một định nghĩa mà ngày nay gọi là không gian Hausdorff.

Cuối cùng, vào năm 1922 Kazimierz Kuratowski đã tổng quát hóa thêm một bước nhỏ để đạt tới khái niệm không gian tô pô như hiện nay.

Thuật ngữ topologie được giới thiệu lần đầu ở Đức vào năm 1847 bởi Johann Benedict Listing trong cuốn Vorstudien zur Topologie (Những nghiên cứu trước tác về tô pô), Vandenhoeck và Ruprecht, Göttingen, pp. 67, 1948. Mặc dù vậy, Listing đã dùng chữ này từ mười năm trước. Topology, dạng Anh ngữ, đã được giới thiệu trong bản in của Solomon Lefschetz năm 1930 để thay cho tên trước đó là analysis situs. Riêng thuật ngữ topologist (nhà tô pô học), một chuyên gia trong ngành tô pô, có lẽ đã ra đời khoảng 1920.

📷Danh sách một số nhà nghiên cứu Tô pô ít chiều (low-dimensional topology) gần đây

Dẫn nhập sơ khởi[sửa | sửa mã nguồn]

Các không gian tô pô được tìm thấy sẵn có trong giải tích toán học, đại số trừu tượng và hình học. Điều này đã làm cho ngành nghiên cứu này trở thành đối tượng quan trọng trong việc thống nhất toán học. Tô pô đại cương, hay tô pô tập điểm, xác định và nghiên cứu những đặc tính hữu dụng của các không gian và các ánh xạ như là tính liên thông, tính compact và tính liên tục. Tô pô đại số là công cụ rất mạnh để nghiên cứu các không gian tô pô và các ánh xạ giữa chúng. Nó liên kết "rời rạc" và có nhiều bất biến khả đoán với các ánh xạ và các không gian thường là trong một cách thức có tính hàm tử. Các luận giải từ môn tô pô đại số ảnh hưởng lớn đến đại số trừu tượng và hình học đại số.

📷Bảy cây cầu Königsberg, một bài toán tô pô nổi tiếng

Động cơ rõ ràng phía sau của tô pô là việc một số vấn đề hình học không phụ thuộc vào hình dạng chính xác của đối tượng tham gia mà phụ thuộc vào "cách thức chúng nối kết nhau". Một trong những bài viết đầu tiên về tô pô được Leonhard Euler mô tả rằng không thể tìm ra một cách đi xuyên qua các thị tứ của Königsberg mà chỉ băng qua mỗi cầu nối giữa chúng đúng một lần. Kết quả này không phụ thuộc vào độ dài của các cây cầu, hay ngay cả khoảng cách giữa chúng mà chỉ phụ thuộc vào các đặc tính liên thông: Các cây cầu được nối như thế nào giữa các cù lao và các bờ sông. Bài toán này, được gọi là Bảy cầu ở Königsberg, đã trở thành bài toán dẫn nhập nổi tiếng trong toán, và đưa tới một phân nhánh là lý thuyết đồ thị.

Tương tự, định lý mặt cầu tóc của tô pô đại số bảo rằng "người ta không thể chải xuôi tóc trên một mặt cầu trơn". Ý nghĩa thực của nó là không tồn tại một mặt cầu tóc nào mà không có "xoáy" ngoại trừ tất cả tóc đều dựng đứng. Định lý này lập tức thuyết phục được hầu hết mọi người (do tính thực tế kiểm nghiệm được trên bản thân). Mặc dù rằng những người biết tới định lý này có thể không nhận biết mệnh đề phát biểu chính thức của định lý. Đó là Trên một mặt cầu, không tồn tại trường vectơ tiếp tuyến liên tục không triệt tiêu nào, cũng giống Bài toán Bảy cây cầu, kết quả trên không phụ thuộc vào dạng cầu mà nó còn đúng cho mọi bề mặt "blob" (là các đối tượng thỏa mãn tính trơn của bề mặt), miễn là chúng không có lỗ hổng (thí dụ hình vòng xuyến, hình vòng số 8 sẽ vi phạm điều kiện của định lý mặt cầu tóc - nhưng hình quả trám, hình trái bóng nhựa bị bóp xẹp lại thỏa mãn đòi hỏi của định lý).

Để có thể nghiên cứu các vấn đề mà chúng không hoàn toàn phụ thuộc vào hình dạng của đối tượng, người ta phải tách bạch rõ ra các tính chất nào sẽ phụ thuộc vào hình dạng. Và từ yêu cầu này phát sinh khái niệm về "tương đương tô pô". Trong các thí dụ trên, việc "không thể băng qua mỗi cây cầu chỉ một lần" có thể được áp dụng cho mọi cách xếp đặt của các cây cầu mà vẫn tương đương tô pô với các cây cầu nguyên thủy ở Königsberg; cũng như vậy, định lý mặt cầu tóc đúng cho mọi không gian tô pô tương đương với một hình cầu (như là hình quả trám chẳng hạn).

Nói cách khác, hai không gian là tương đương tô pô nếu tồn tại một phép đồng phôi giữa chúng. Trong trường hợp này, các không gian đó được gọi là đồng phôi và chúng được xét một cách chủ yếu như là có cùng các mục đích (nghiên cứu) của tô pô.

Một cách chính thức, một phép đồng phôi là một song ánh liên tục với hàm ngược cũng liên tục.

Một cách nôm na có thể cho thấy một ý nghĩa rõ hơn: Hai không gian là tương đương tô pô nếu người ta có thể biến dạng một không gian thành cái còn lại mà không phải cắt bỏ hay đục thủng các chi tiết ra và không phải dán các chi tiết lại với nhau. Dĩ nhiên, ở đây ta giả thiết "vật" (không gian) bị biến dạng có khả năng "siêu dẻo". Do vậy, việc nói đùa rằng nhà tô pô học không thể phân biệt được một vòng xuyến và cái ly có quai là vì cái ly có thể bị nặn bóp để trở thành hình vòng xuyến.

Một bài tập đơn giản về tương đương tô pô chia 10 chữ số Ả Rập, 0,1,2,3,4,5,6,7,8,9, thành các lớp có hình dạng tương đương nhau về mặt tô pô. Lớp thứ nhất bao gồm {1,2,3,5,7}; hình dạng các chữ số này không có lỗ hổng. Lớp thứ hai là {0,4,9,6}; hình dạng các chữ số này có đúng 1 lỗ hổng. Và lớp thứ 3 chỉ có một phần tử duy nhất {8} có tới hai lỗ hổng.

Toán học tô pô[sửa | sửa mã nguồn]

Để hiểu được tô pô theo góc độ toán học, có thể phải dùng đến hai khái niệm tập hợp và ánh xạ.

Cho một tập hợp X ≠ {\displaystyle \emptyset }📷 và họ t các tập hợp con của X. Họ t được gọi là tô pô trên X nếu:

{\displaystyle \emptyset }📷 {\displaystyle \in }📷 t, X {\displaystyle \in }📷 t: họ t bao gồm cả X và cả tập hợp rỗng.

Hợp một họ bất kỳ các phần tử của t là một phần tử của t.

Giao của một họ hữu hạn các phần tử của t là một phần tử của t.

Cặp (X,t) khi ấy được gọi là một không gian tô pô, ta có thể ghi tắt X mà không cần ghi đầy đủ là (X,t). Tập {\displaystyle \emptyset }📷 không phải là không gian tôpô.

Một số định lý tổng quát về tô pô[sửa | sửa mã nguồn]

Mọi khoảng đóng trong R có chiều dài hữu hạn là compact. Rộng hơn: Một tập hợp trong R n là compact nếu và chỉ nếu nó đóng và bị chặn. (Xem thêm Định lý Heine-Borel)

Ảnh liên tục của một không gian compact là compact.

Định lý Tychonoff: Tích của các không gian compact là compact.

Mọi dãy điểm trong một không gian mêtric compact có dãy con hội tụ.

Mọi khoảng trong R là liên thông.

Ảnh liên tục của một không gian liên thông (connected space) là liên thông.

Mọi không gian mêtric là không gian Hausdorff, thì cũng là không gian chuẩn tắc và parcompact.

Định lý mêtric hoá cung cấp điều kiện cần và đủ cho một tô pô để trở thành một không gian mêtric.

Định lý mở rộng Tietze: Trong một không gian chuẩn tắc, mọi hàm có giá trị thực liên tục xác định trên một không gian con đóng đều có thể mở rộng thành một hàm liên tục xác định trên toàn bộ không gian đó.

Định lý phạm trù Baire: Nếu X là một không gian metric đủ hay là một không gian Hausdorff compact địa phương, thì hội đếm được của các tập không đâu trù mật có phần trong là tập trống.

Mọi không gian đường liên thông, đường liên thông địa phương, và đơn liên bán địa phương đều có một phủ phổ dụng.

0
📷Một sơ đồ Venn mô phỏng phép giao của hai tập hợp.Lý thuyết tập hợp là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra...
Đọc tiếp

📷Một sơ đồ Venn mô phỏng phép giao của hai tập hợp.

Lý thuyết tập hợp là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.

Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra các nghịch lý trong lý thuyết tập không hình thức, đã có nhiều hệ tiên đề được đề nghị vào đầu thế kỷ thứ 20, trong đó có các tiên đề Zermelo–Fraenkel, với tiên đề chọn là nổi tiếng nhất.

Ngôn ngữ của lý thuyết tập hợp được dùng trong định nghĩa của gần như tất cả các đối tượng toán học, như hàm số, và các khái niệm lý thuyết tập hợp được đưa nhiều chương trình giảng dạy toán học. Các sự kiện cơ bản về tập hợp và phần tử trong tập hợp có thể được mang ra giới thiệu ở cấp tiểu học, cùng với sơ đồ Venn, để học về tập hợp các đối tượng vật lý thường gặp. Các phép toán cơ bản như hội và giao có thể được học trong bối cảnh này. Các khái niệm cao hơn như bản số là phần tiêu chuẩn của chương trình toán học của sinh viên đại học.

Lý thuyết tập hợp, được hình thức hóa bằng lôgic bậc nhất (first-order logic), là phương pháp toán học nền tảng thường dùng nhất. Ngoài việc sử dụng nó như một hệ thống nền tảng, lý thuyết tập hợp bản thân nó cũng là một nhánh của toán học, với một cộng đồng nghiên cứu tích cực. Các nghiên cứu mới nhất về lý thuyết tập hợp bao gồm nhiều loại chủ đề khác nhau, từ cấu trúc của dòng số thực đến nghiên cứu tính nhất quán của bản số lớn.

Mục lục

1Lịch sử

1.1Thế kỷ 19

1.220. Jahrhundert

2Khái niệm và ký hiệu cơ bản

2.1Quan hệ giữa các tập hợp

2.1.1Quan hệ bao hàm

2.1.2Quan hệ bằng nhau

2.2Các phép toán trên các tập hợp

3Ghi chú

4Liên kết ngoài

5Đọc thêm

Lịch sử[sửa | sửa mã nguồn]

📷Georg Cantor

Các chủ đề về toán học thường xuất hiện và phát triển thông qua sự tương tác giữa các nhà nghiên cứu. Tuy nhiên, lý tuyết tập hợp được tìm thấy năm 1874 bởi Georg Cantor thông qua bài viết: "On a Characteristic Property of All Real Algebraic Numbers".[1][2]

Thế kỷ 19[sửa | sửa mã nguồn]

📷Tập hợp như là một thu góp trong tư tưởng các đối tượng có quan hệ nào đó với nhau.
Cái trống là phần tử của tập hợp
Cuốn sách không phải là phần tử của tập hợp.

Lý thuyết tập hợp được sáng lập bởi Georg Cantor trong những năm 1874 đến năm 1897. Thay cho thuật ngữ "tập hợp", ban đầu ông ta đã sử dụng những từ như "biểu hiện" (inbegriff) hoặc "sự đa dạng" (Mannigfaltigkeit); Về tập hợp và Lý thuyết tập hợp, ông chỉ nói sau đó. Năm 1895, ông đã diễn tả định nghĩa sau:

Qua một "tập hợp", chúng ta hiểu là bất kỳ một tổng hợp M của một số vật thể m khác nhau được xác định rõ ràng trong quan điểm hoặc suy nghĩ của chúng ta (được gọi là "các phần tử" của M) thành một tổng thể.

Cantor phân loại các tập hợp, đặc biệt là những tập hợp vô hạn, theo Lực lượng của chúng. Đối với tập hợp hữu hạn, đây là số lượng các phần tử của chúng. Ông gọi hai tập hợp " có lực lượng bằng nhau" khi chúng được ánh xạ song ánh với nhau, tức là khi có một mối quan hệ một-một giữa các phần tử của chúng. Cái được định nghĩa là sự đồng nhất lực lượng là một quan hệ tương đương, và một lực lượng hay số phần tử của một tập hợp M theo Cantor, là lớp tương đương của các tập hợp có lực lượng bằng M. Ông là người đầu tiên quan sát thấy rằng có những lực lựong vô hạn khác nhau. Tập hợp các số tự nhiên, và tất cả các tập hợp có lực lượng bằng nó, được Cantor gọi là 'Tập hợp đếm được, tất cả các tập hợp vô hạn khác được gọi là tập hợp không đếm được.

Các kết quả quan trọng từ Cantor

Tập hợp của số tự nhiên, số hữu tỉ (lập luận chéo đầu tiên của Cantor) và số đại số là đếm được và có lực lượng bằng nhau.

Tập hợp số thực có lực lượng lớn hơn so với các số tự nhiên, đó là không đếm được (luận chéo thứ hai củaCantor).

Tập hợp của tất cả các tập hợp con của một tập hợp M luôn luôn có lực lượng lớn hơn là M , mà còn được gọi là định lý Cantor.

Từ bất kỳ hai tập hợp có ít nhất một tập hợp cùng lực lượng với một tập hợp con của tập hợp kia.

Có rất nhiều lực lượng của tập hợp không đếm được.

Cantor gọi Giả thiết continuum là "có một lực lượng ở giữa tập hợp các số tự nhiên và tập hợp các số thực " Ông đã cố gắng để giải quyết, nhưng không thành công. Sau đó nó bật ra rằng vấn đề này trên nguyên tắc không quyết định được.

Ngoài Cantor, Richard Dedekind là một nhà tiên phong quan trọng của lý thuyết về lý thuyết tập hợp. Ông đã nói về các "hệ thống" thay vì tập hợp và phát triển một cấu trúc lý thuyết tập hợp của các con số thực vào năm 1872[4], một số lượng lý thuyết xây dựng số thực [2] và 1888 nói về tiên đề hóa lý thuyết tập hợp các con số tự nhiên.[5]Ông là người đầu tiên tạo ra công thức tiên đề Axiom of extensionality của lý thuyết tập hợp.

Ngay từ năm 1889, Giuseppe Peano, người đã miêu tả tập hợp là các tầng lớp, đã tạo ra cách tính toán bằng công thức logic các tầng lớp đầu tiên làm cơ sở cho số học của ông với các tiên đề Peano, mà ông đã mô tả lần đầu tiên trong một ngôn ngữ lý thuyết tập hợp chính xác. Do đó ông đã phát triển cơ sở cho ngông ngữ công thức ngày nay của lý thuyết tập hợp và giới thiệu nhiều biểu tượng được phổ biến ngày nay, đặc biệt là ký hiệu phần tử {\displaystyle \in }📷, được đọc là là "phần tử của"[6]. Trong khi đó {\displaystyle \in }📷 là chữ viết thường của ε (epsilon) của từ ἐστί (tiếng Hy Lạp: "là").[7]

Gottlob Frege đã cố gắng đưa ra một lý giải lý thuyết tập hợp khác của lý thuyết về số học vào năm 1893. Bertrand Russell đã phát hiện ra mâu thuẫn của nó vào năm 1902, được biết đến như là Nghịch lý Russell. Sự mâu thuẫn này và các mâu thuẫn khác nảy sinh do sự thiết lập tập hợp không hạn chế, đó là lý do tại sao dạng thức ban đầu của lý thuyết tập hợp sau này được gọi là lý thuyết tập hợp ngây thơ. Tuy nhiên, định nghĩa của Cantor không có ý muốn nói tới một lý thuyết tập hợp ngây thơ như vậy, như chứng minh của ông về loại tất cả là Nichtmenge cho thấy bởi nghịch lý Cantor thứ hai [6].[8]

Học thuyết của Cantor về lý thuyết tập hợp hầu như không được công nhận bởi những người đương thời về vai trò quan trọng của nó, và không được coi là bước tiến cách mạng, mà đã bị một số các nhà toán học như Leopold Kronecker không chấp nhận. Thậm chí nhiều hơn, nó còn bị mang tiếng khi các nghịch lý được biết tới, ví dụ như Henri Poincaré, chế diễu, "Logic không còn hoàn toàn, bây giờ nó tạo ra những mâu thuẫn."

20. Jahrhundert[sửa | sửa mã nguồn]

Trong thế kỷ XX, những ý tưởng của Cantor tiếp tục chiếm ưu thế; đồng thời, trong Logic toán, một lý thuyết Axiomatic Quantum đã được thiết lập, qua đó có thể vượt qua các mâu thuẫn hiện thời.

Năm 1903/1908 Bertrand Russell phát triển Type theory của mình, trong đó tập hợp luôn luôn có một kiểu cao hơn các phần tử của chúng, do đó sự hình thành các tập hợp có vấn đề sẽ không thể xảy ra. Ông chỉ ra cách đầu tiên ra khỏi những mâu thuẫn và cho thấy trong "Principia Mathematica" của 1910-1913 cũng là một phần hiệu quả của Type theory ứng dụng. Cuối cùng, tuy nhiên, nó chứng tỏ là không thích hợp với lý thuyết tập hợp của Cantor và cũng không thể vượt qua được sự phức tạp của nó.

Tiên đề lý thuyết tập hợp được phát triển bởi Ernst Zermelo vào năm 1907 ngược lại dễ sử dụng và thành công hơn, trong đó schema of replacement của ông là cần thiết để bổ sung vào. Zermelo thêm nó vào hệ thống Zermelo-Fraenkel năm 1930, mà ông gọi tắt là hệ thống-ZF. Ông đã thiết kế nó cho Urelement mà không phải là tập hợp, nhưng có thể là phần tử của tập hợp và được xem như cái Cantor gọi là "đối tượng của quan điểm của chúng tôi." Lý thuyết tập hợp Zermelo-Fraenkel, tuy nhiên, theo ý tưởng Fraenkel là lý thuyết tập hợp thuần túy mà đối tượng hoàn toàn là các tập hợp.

Tuy nhiên, nhiều nhà toán học thay vì theo một tiên đề hợp lý lại chọn một lý thuyết tập hợp thực dụng, tránh tập hợp có vấn đề, chẳng hạn như những áp dụng của Felix Hausdorff1914 hoặc Erich Kamke từ năm 1928. Dần dần các nhà toán học ý thức hơn rằng lý thuyết tập hợp là một cơ bản không thể thiếu cho cấu trúc toán học. Hệ thống ZF chứng minh được trong thực hành, vì vậy ngày nay nó được đa số các nhà toán học công nhận là cơ sở của toán học hiện đại; không còn có mâu thuẫn có thể bắt nguồn từ hệ thống ZF. Tuy nhiên, sự không mâu thuẫn chỉ có thể được chứng minh cho lý thuyết tập hợp với tập hợp hữu hạn, chứ không phải cho toàn bộ hệ thống ZF, mà chứa lý thuyết tập hợp của Cantor với tập hợp vô hạn. Theo Gödel's incompleteness theorems năm 1931 một chứng minh về tính nhất quán về nguyên tắc là không thể được. Những khám phá Gödel chỉ là chương trình của Hilbert để cung cấp toán học và lý thuyết tập hợp vào một cơ sở tiên đề không mâu thuẫn được chứng minh, một giới hạn, nhưng không cản trở sự thành công của lý thuyết trong bất kỳ cách nào, vì vậy mà một khủng hoảng nền tảng của toán học, mà những người ủng hộ của Intuitionismus, trong thực tế không được cảm thấy.

Tuy nhiên, sự công nhận cuối cùng của lý thuyết tập hợp ZF trong thực tế trì hoãn trong một thời gian dài. Nhóm toán học với bút danh Nicolas Bourbaki đã đóng góp đáng kể cho sự công nhận này; họ muốn mô tả mới toán học đồng nhất dựa trên lý thuyết tập hợp và biến đổi nó vào năm 1939 tại các lãnh vực toán học chính thành công. Trong những năm 1960, nó trở nên phổ biến rộng rãi rằng, lý thuyết tập hợp ZF thích hợp là cơ sở cho toán học. Đã có một khoảng thời gian tạm thời trong đó lý thuyết số lượng đã được dạy ở tiểu học.

Song song với câu chuyện thành công của thuyết tập hợp, tuy nhiên, việc thảo luận về các tiên đề tập hợp vẫn còn lưu hành trong thế giới chuyên nghiệp. Nó cũng hình thành những lý thuyết tập hợp tiên đề thay thế khoảng năm 1937 mà không hướng theo Cantor và Zermelo-Fraenkel, nhưng dựa trên Lý thuyết kiểu (Type Theory) của Willard Van Orman Quine từ New Foundations (NF) của ông ta, năm 1940 lý thuyết tập hợp Neumann-Bernays-Godel, mà khái quát hóa ZF về các lớp (Class (set theory)), hay năm 1955, lý thuyết tập hợp Ackermann, khai triển mới định nghĩa tập hợp của Cantor.

Khái niệm và ký hiệu cơ bản[sửa | sửa mã nguồn]

Lý thuyết tập hợp bắt đầu với một quan hệ nhị phân cơ bản giữa một phần tử o và một tập hợp A. Nếu o là một thành viên (hoặc phần tử) của A, ký hiệu o ∈ A được sử dụng. Khi đó ta cũng nói rằng phần tử a thuộc tập hợp A. Vì các tập cũng là các đối tượng, quan hệ phần tử cũng có thể liên quan đến các tập.

Quan hệ giữa các tập hợp[sửa | sửa mã nguồn]

Quan hệ bao hàm[sửa | sửa mã nguồn]

Nếu tất cả các thành viên của tập A cũng là thành viên của tập B , thì A là một Tập hợp con của B , được biểu thị {\displaystyle A\subseteq B}📷, và tập hợp B bao hàm tập hợp A. Ví dụ, {1, 2} là một tập hợp con của {1, 2, 3}, và {2} cũng vậy, nhưng { 1, 4} thì không.

Quan hệ bằng nhau[sửa | sửa mã nguồn]

Hai tập hợp A và B được gọi là bằng nhau nếu A là tập hợp con của B và B cũng là tập hợp con của A, ký hiệu A = B.

Theo định nghĩa, mọi tập hợp đều là tập con của chính nó; tập rỗng là tập con của mọi tập hợp. Mọi tập hợp A không rỗng có ít nhất hai tập con là rỗng và chính nó. Chúng được gọi là các tập con tầm thường của tập A. Nếu tập con B của A khác với chính A, nghĩa là có ít nhất một phần tử của A không thuộc B thì B được gọi là tập con thực sự hay tập con chân chính của tập A.

Chú ý rằng 1 và 2 và 3 là các thành viên của tập {1, 2, 3}, nhưng không phải là tập con, và các tập con, chẳng hạn như {1}, không phải là thành viên của tập {1, 2, 3}.

Các phép toán trên các tập hợp[sửa | sửa mã nguồn]

Hợp (Union): Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu A {\displaystyle \cup }📷 B

Ta có A {\displaystyle \cup }📷 B = {x: x {\displaystyle \in }📷 A hoặc x {\displaystyle \in }📷 B}, hợp của {1, 2, 3} và {2, 3, 4} là tập {1, 2, 3, 4}.

Giao (Intersection): Giao của hai tập hợp A và B là tập hợp tất cả các phần tử vừa thuộc A, vừa thuộc B, ký hiệu A {\displaystyle \cap }📷 B

Ta có A {\displaystyle \cap }📷 B = {x: x {\displaystyle \in }📷 A và x {\displaystyle \in }📷 B}, giao của {1, 2, 3} và {2, 3, 4} là tập { 2, 3}.

Hiệu (Difference): Hiệu của tập hợp A với tập hợp B là tập hợp tất cả các phần tử thuộc A nhưng không thuộc B, ký hiệu {\displaystyle A\setminus B}📷

Ta có: A \ B = {x: x {\displaystyle \in }📷 A và x {\displaystyle \notin }📷 B}Lưu ý, A \ B {\displaystyle \neq }📷 B \ A

Phần bù (Complement): là hiệu của tập hợp con. Nếu A{\displaystyle \subset }📷B thì B \ A được gọi là phần bù của A trong B, ký hiệu CAB (hay CB A)

1
☘Những chuyện không cần giải thích kia, vào giây phút bạn nói ra, bạn đã thua.☘Những phiền não trong cuộc đời được gói gọn trong 12 chữ: Không buông được, nghĩ không thông, nhìn không thấu, quên không nổi!☘Người không quan tâm đến tôi, bạn dựa vào cái gì mà bảo tôi phải tiếp Người ta nghĩ sao về bạn, không có liên quan gì đến bạn. Bạn sống thế nào, cũng không có liên quan gì...
Đọc tiếp

Những chuyện không cần giải thích kia, vào giây phút bạn nói ra, bạn đã thua.

Những phiền não trong cuộc đời được gói gọn trong 12 chữ: Không buông được, nghĩ không thông, nhìn không thấu, quên không nổi!

Người không quan tâm đến tôi, bạn dựa vào cái gì mà bảo tôi phải tiếp Người ta nghĩ sao về bạn, không có liên quan gì đến bạn. Bạn sống thế nào, cũng không có liên quan gì đến người ta.

Thể diện rốt cuộc bao nhiêu tiền một cân? Tại sao chúng ta phải để tâm đến cách nhìn của người khác.

Có một ngày bạn sẽ hiểu, lương thiện khó hơn thông minh nhiều. Thông minh là một loại tài năng thiên phú, còn lương thiện lại là một sự lựa chọn.

Trong cuộc sống, giai đoạn khó khăn nhất không phải là không ai hiểu bạn, mà là… bạn không hiểu chính mình.

Cuộc đời này thật ngắn ngủi, đừng dành… dù chỉ một phút cho những ngườ

3
29 tháng 5 2019

cái cuối viết thiếu rồi cha!

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).Cụm từ "số học" cũng được...
Đọc tiếp

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.

Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).

Cụm từ "số học" cũng được sử dụng để nói đến lý thuyết số. Đây là cụm từ không còn được sử dụng rộng rãi nữa. Tuy nhiên, nó vẫn còn hiện diện trong tên của một số lĩnh vực toán học (hàm số học, số học đường cong elliptic, lý thuyết căn bản của số học). Việc sử dụng cụm từ số học ở đây không nên nhầm lẫn với số học sơ cấp.

Mục lục

1Các lĩnh vực

1.1Lý thuyết số sơ cấp

1.2Lý thuyết số giải tích

1.3Lý thuyết số đại số

1.4Lý thuyết số hình học

1.5Lý thuyết số tổ hợp

1.6Lý thuyết số máy tính

2Lịch sử

2.1Lý thuyết số thời kì Vedic

2.2Lý thuyết số của người Jaina

2.3Lý thuyết số Hellenistic

2.4Lý thuyết số Ấn Độ cổ điển

2.5Lý thuyết số của người Hồi giáo

2.6Lý thuyết số châu Âu ban đầu

2.7Mở đầu lý thuyết số hiện đại

2.8Lý thuyết số về số nguyên tố

2.9Các thành tựu trong thế kỉ 19

2.10Các thành tựu trong thế kỉ 20

3Danh ngôn

4Tham khảo

5Liên kết ngoài

Các lĩnh vực[sửa | sửa mã nguồn]

Lý thuyết số sơ cấp[sửa | sửa mã nguồn]

Trong lý thuyết số sơ cấp, các số nguyên được nghiên cứu mà không cần các kĩ thuật từ các lĩnh vực khác của toán học. Nó nghiên cứu các vấn đề về chia hết, cách sử dụng thuật toán Euclid để tìm ước chung lớn nhất, phân tích số nguyên thành thừa số nguyên tố, việc nghiên cứu các số hoàn thiện và đồng dư.

Rất nhiều vấn đề trong lý thuyết số có thể phát biểu dưới ngôn ngữ sơ cấp, nhưng chúng cần những nghiên cứu sâu sắc và những tiếp cận mới bên ngoài lĩnh vực lý thuyết số để giải quyết.

Một số ví dụ:

Giả thuyết Goldbach nói về việc biểu diễn các số chẵn thành tổng của hai số nguyên tố.

Giả thuyết Catalan (bây giờ là định lý Mihăilescu) nói về các lũy thừa nguyên liên tiếp.

Giả thuyết số nguyên tố sinh đôi nói rằng có vô hạn số nguyên tố sinh đôi

Giả thuyết Collazt nói về một dãy đệ quy đơn giản

Định lý lớn Fermat (nêu lên vào năm 1637, đến năm 1994 mới được chứng minh) nói rằng phương trình {\displaystyle x^{n}+y^{n}=z^{n}}📷 không có nghiệm nguyên khác không với n lớn hơn 2.

Lý thuyết về phương trình Diophantine thậm chí đã được chứng minh là không có phương pháp chung đề giải (Xem Bài toán thứ 10 của Hilbert)

Lý thuyết số giải tích[sửa | sửa mã nguồn]

Lý thuyết giải tích số sử dụng công cụ giải tích và giải tích phức để giải quyết các vần đề về số nguyên. Định lý số nguyên tố và giả thuyết Riemann là các ví dụ. Bài toán Waring(biểu diễn một số nguyên cho trước thành tổng các bình phương, lập phương, v.v...), giả thuyết số nguyên tố sinh đôi và giả thuyết Goldbach cũng đang bị tấn công bởi các phương pháp giải tích. Chứng minh về tính siêu việt của các hằng số toán học, như là π hay e, cũng được xếp vào lĩnh vực lý thuyết giải tích số. Trong khi những phát biểu về các số siêu việt dường như đã bị loại bỏ khỏi việc nghiên cứu về các số nguyên, chúng thực sự nghiên cứu giá trị của các đa thức với hệ số nguyên tại, ví dụ, e; chúng cũng liên quan mật thiết với lĩnh vực xấp xỉ Diophantine, lĩnh vực nghiên cứu một số thực cho trước có thể xấp xỉ bởi một số hữu tỉ tốt tới mức nào.

Lý thuyết số đại số[sửa | sửa mã nguồn]

Trong Lý thuyết số đại số, khái niệm của một số được mở rộng thành các số đại số, tức là các nghiệm của các đa thức với hệ số nguyên. Những thứ này bao gồm những thành phần tương tự với các số nguyên, còn gọi là số nguyên đại số. Với khái niệm này, những tính chất quen thuộc của số nguyên (như phân tích nguyên tố duy nhất) không còn đúng. Lợi thế của những công cụ lý thuyết - Lý thuyết Galois, group cohomology, class field theory, biểu diễn nhóm và hàm L - là nó cho phép lấy lại phần nào trật tự của lớp số mới.

Rất nhiều vấn đề lý thuyết số có thể được giải quyết một cách tốt nhất bởi nghiên cứu chúng theo modulo p với mọi số nguyên tố p (xem các trường hữu hạn). Đây được gọi là địa phương hóa và nó dẫn đến việc xây dựng các số p-adic; lĩnh vực nghiên cứu này được gọi là giải tích địa phương và nó bắt nguồn từ lý thuyết số đại sô.

Lý thuyết số hình học[sửa | sửa mã nguồn]

Lý thuyết số hình học (cách gọi truyền thống là (hình học của các số) kết hợp tất cả các dạng hình học. Nó bắt đầu với định lý Minkowski về các điểm nguyên trong các tập lồi và những nghiên cứu về sphere packing.

Lý thuyết số tổ hợp[sửa | sửa mã nguồn]

Lý thuyết số tổ hợp giải quyết các bài toán về lý thuyết số mà có tư tưởng tổ hợp trong công thức hoặc cách chứng minh của nó. Paul Erdős là người khởi xướng chính của ngành lý thuyết số này. Những chủ đề thông thường bao gồm hệ bao, bài toán tổng-zero, rất nhiều restricted sumset và cấp số cộng trong một tập số nguyên. Các phương pháp đại số hoặc giải tích rất mạnh trong những lĩnh vực này.

Lý thuyết số máy tính[sửa | sửa mã nguồn]

Lý thuyết số máy tính nghiên cứu các thuật toán liên quan đến lý thuyết số. Những thuật toán nhanh chóng để kiểm tra tính nguyên tố và phân tích thừa số nguyên tố có những ứng dụng quan trọng trong mã hóa.

Lịch sử[sửa | sửa mã nguồn]

Lý thuyết số thời kì Vedic[sửa | sửa mã nguồn]

Các nhà toán học Ấn Độ đã quan tâm đến việc tìm nghiệm nguyên của phương trình Diophantine từ thời kì Vedic. Những ứng dụng sớm nhất vào hình học của phương trình Diophantine có thể tìm thấy trong kinh Sulba, được viết vào khoảng giữa thế kỉ thứ 8 và thế kỉ thứ 6 trước Công nguyên. Baudhayana (năm 800 TCN) tìm thấy hai tập nghiệm nguyên dương của một hệ các phương trình Diophantine, và cũng sử dụng hệ phương trình Diophantine với tới bốn ẩn. Apastamba (năm 600) sử dụng hệ phương trình Diophantine với tới năm ẩn.

Lý thuyết số của người Jaina[sửa | sửa mã nguồn]

Ở Ấn Độ, các nhà toán học Jaina đã phát triển lý thuyết số có hệ thống đầu tiên từ thế kỉ thứ 4 trước Công Nguyên tới thế kỉ thứ 2. Văn tự Surya Prajinapti (năm 400 TCN) phân lớp tất cả các số thành ba tập: đếm được, không đếm được và vô hạn. Mỗi tập này lại được phân thành ba cấp:

Đếm được: thấp nhất, trung bình, và cao nhất.

Không đếm được: gần như không đếm được, thật sự không đếm được, và không đếm được một cách không đếm được.

Vô hạn: gần như vô hạn, thật sự vô hạn, vô hạn một cách vô hạn

Những người Jain là những người đầu tiên không chấp nhận ý tưởng các vô hạn đều như nhau. Họ nhận ra năm loại vô hạn khác nhau: vô hạn theo một hoặc hai hướng (một chiều), vô hạn theo diện tích (hai chiều), vô hạn mọi nơi (ba chiều), và vô hạn liên tục (vô số chiều).

Số đếm được cao nhất N của người Jain tương ứng với khái niệm hiện đại aleph-không {\displaystyle \aleph _{0}}📷 (cardinal number của tập vô hạn các số nguyên 1,2,...), the smallest cardinal transfinite number. Người Jain cũng định nghĩa toàn bộ hệ thống các cardinal number, trong đó {\displaystyle \aleph _{0}}📷 là nhỏ nhất.

Trong công trình của người Jain về lý thuyết tập hợp, họ phân biệt hai loại transfinite number cơ bản. Ở cả lĩnh vực vật lý và bản thể học (ontology), sự khác nhau được tạo ra giữa asmkhyataananata, giữa vô hạn bị chặn ngặt và vô hạn bị chặn lỏng.

Lý thuyết số Hellenistic[sửa | sửa mã nguồn]

Lý thuyết số là một đề tài ưa thích của các nhà toán học Hellenistic ở Alexandria, Ai Cập từ thế kỉ thứ 3 sau Công Nguyên. Họ đã nhận thức được khái niệm phương trình Diophantine trong rất nhiều trường hợp đặc biệt. Nhà toán học Hellenistic đầu tiên nghiên cứu những phương trình này là Diophantus.

Diophantus cũng đã tìm kiếm một phương pháp để tìm nghiệm nguyên của các phương trình vô định tuyến tính, những phương trình mà thiếu điều kiện đủ để có một tập duy nhất các nghiệm phân biệt. Phương trình {\displaystyle x+y=5}📷 là một phương trình như vậy. Diophantus đã khám phá ra nhiều phương trình vô định có thể biến đổi thành các dạng đã biết mặc dù thậm chí còn không biết được nghiệm cụ thể.

Lý thuyết số Ấn Độ cổ điển[sửa | sửa mã nguồn]

Phương trình Diophantine đã được nghiên cứu một cách sâu sắc bởi các nhà toán học Ân Độ trung cổ. Họ là những người đầu tiên nghiên cứu một cách có hệ thống các phương pháp tìm nghiệm nguyên của phương trình Diophantine. Aryabhata (499) là người đầu tiên tìm ra dạng nghiệm tổng quát của phương trình Diophantine tuyến tính {\displaystyle ay+bx=c}📷, được ghi trong cuốn Aryabhatiya của ông. Thuật toán kuttaka này được xem là một trong những cống hiến quan trọng nhất của Aryabhata trong toán học lý thuyết, đó là tìm nghiệm của phương trình Diophantine bằng liên phân số. Aryabhata đã dùng kĩ thuật này để tìm nghiệm nguyên của các hệ phương trình Diophantine, một bài toán có ứng dụng quan trọng trong thiên văn học. Ông cũng đã tìm ra nghiệm tổng quát đối với phương trình tuyến tính vô định bằng phương pháp này.

Brahmagupta vào năm 628 đã nắm được những phương trình Diophantine phức tạp hơn. Ông sử dụng phương pháp chakravala để giải phương trình Diophantine bậc hai, bao gồm cả các dạng của phương trình Pell, như là {\displaystyle 61x^{2}+1=y^{2}}📷. Cuốn Brahma Sphuta Siddhanta của ông đã được dịch sang tiếng Ả Rập vào năm 773 và sau đó được dịch sang tiếng Latin vào năm 1126. Phương trình {\displaystyle 61x^{2}+1=y^{2}}📷 sau đó đã được chuyển thành một bài toán vào năm 1657 bởi nhà toán học người Pháp Pierre de Fermat. Leonhard Euler hơn 70 năm sau đã tìm được nghiệm tổng quát đối với trường hợp riêng này của phương trình Pell, trong khi nghiệm tổng quát của phương trình Pell đã được tìm ra hơn 100 năm sau đó bởi Joseph Louis Lagrange vào 1767. Trong khi đó, nhiều thế kỉ trước, nghiệm tổng quát của phương trình Pell đã được ghi lại bởi Bhaskara II vào 1150, sử dụng một dạng khác của phương pháp chakravala. Ông cũng đã sử dụng nó để tìm ra nghiệm tổng quát đối với các phương trình vô định bậc hai và phương trình Diophantine bậc hai khác. Phương pháp chakravala của Bhaskara dùng để tìm nghiệm phương trình Pell đơn giản hơn nhiều so với phương pháp mà Lagrange sử dụng 600 năm sau đó. Bhaskara cũng đã tìm được nghiệm của các phương trình vô định bậc hai, bậc ba, bốn và cao hơn. Narayana Pandit đã cải tiến phương pháp chakravala và tìm thêm được các nghiệm tổng quát hơn đối với các phương trình vô định bậc hai và cao hơn khác.

Lý thuyết số của người Hồi giáo[sửa | sửa mã nguồn]

Từ thế kỉ 9, các nhà toán học Hồi giáo đã rất quan tâm đến lý thuyết số. Một trong những nhà toán học đầu tiên này là nhà toán học Ả Rập Thabit ibn Qurra, người đã khám phá ra một định lý cho phép tìm các cặp số bạn bè, tức là các số mà tổng các ước thực sự của số này bằng số kia. Vào thế kỉ 10, Al-Baghdadi đã nhìn vào một ít biến đổi trong định lý của Thabit ibn Qurra.

Vào thế kỉ 10, al-Haitham có thể là người đầu tiên phân loại các số hoàn hảo chẵn (là các số mà tổng các ước thực sự của nó bằng chính nó) thành các số có dạng {\displaystyle 2^{k-1}(2^{k}-1)}📷trong đó {\displaystyle 2^{k}-1}📷 là số nguyên tố. Al-Haytham cũng là người đầu tiên phát biểu định lý Wilson (nói rằng p là số nguyên tố thì {\displaystyle 1+(p-1)!}📷 chia hết cho p). Hiện không rõ ông ta có biết cách chứng minh nó không. Định lý có tên là định lý Wilson vì căn cứ theo một lời chú thích của Edward Waring vào năm 1770 rằng John Wilson là người đầu tiên chú ý đến kết quả này. Không có bằng chứng nào chứng tỏ John Wilson đã biết cách chứng minh và gần như hiển nhiên là Waring cũng không. Lagrange đã đưa ra chứng minh đầu tiên vào 1771.

Các số bạn bè đóng vai trò quan trọng trong toán học của người Hồi giáo. Vào thế kỉ 13, nhà toán học Ba Tư Al-Farisi đã đưa ra một chứng minh mới cho định lý của Thabit ibn Qurra, giới thiệu một ý tưởng mới rất quan trọng liên quan đến phương pháp phân tích thừa số và tổ hợp. Ông cũng đưa ra cặp số bạn bè 17296, 18416 mà người ta vẫn cho là của Euler, nhưng chúng tao biết rằng những số này còn được biết đến sớm hơn cả al-Farisi, có thể bởi chính Thabit ibn Qurra. Vào thế kỉ 17, Muhammad Baqir Yazdi đưa ra cặp số bạn bè 9.363.584 và 9.437.056 rất nhiều năm trước khi Euler đưa ra.

Lý thuyết số châu Âu ban đầu[sửa | sửa mã nguồn]

Lý thuyết số bắt đầu ở Châu Âu vào thế kỉ 16 và 17, với François Viète, Bachet de Meziriac, và đặc biệt là Fermat, mà phương pháp lùi vô hạn của ông là chứng minh tổng quát đầu tiên của phương trình Diophantine. Định lý lớn Fermat được nêu lên như là một bài toán vào năm 1637, và không có lời giải cho đến năm 1994. Fermat cũng nêu lên bài toán {\displaystyle 61x^{2}+1=y^{2}}📷 vào năm 1657.

Vào thế kỉ 18, Euler và Lagrange đã có những cống hiến quan trọng cho lý thuyết số. Euler đã làm một vài công trình về lý thuyết giải tích số, và tình được một nghiệm tổng quát của phương trình {\displaystyle 61x^{2}+1=y^{2}}📷, mà Fermat nêu thành bài toán. Lagrange đã tìm được một nghiệm của phương trình Pell tổng quát hơn. Euler và Lagrange đã giải những phương trình Pell này bằng phương pháp liên phân số, mặc dù nó còn khó hơn phương pháp chakravala của Ấn Độ.

Mở đầu lý thuyết số hiện đại[sửa | sửa mã nguồn]

Khoảng đầu thế kỉ 19 các cuốn sách của Legendre (1798), và Gauss kết hợp thành những lý thuyết có hệ thống đầu tiên ở châu Âu. Cuốn Disquisitiones Arithmeticae (1801) có thể nói là đã mở đầu lý thuyết số hiện đại.

Sự hình thành lý thuyết đồng dư bắt đầu với cuốn Disquisitiones của Gauss. Ông giới thiệu ký hiệu

{\displaystyle a\equiv b{\pmod {c}},}📷

và đã khám phá ra hầu hết trong lĩnh vực này. Chebyshev đã xuất bản vào năm 1847 một công trình bằng tiếng Nga về chủ đề này, và ở Pháp Serret đã phổ biến nó.

Bên cạnh những công trình tổng kết trước đó, Legendre đã phát biểu luật tương hỗ bậc hai. Định lý này, được khám phá ra bởi qui nạp và được diễn đạt bởi Euler, đã được chứng minh lần đầu tiên bởi Legendre trong cuốn Théorie des Nombres của ông (1798) trong những trường hợp đặc biệt. Độc lập với Euler và Legendre, Gauss đã khám phá ra định luật này vào khoảng năm 1795, và là người đầu tiên đưa ra chứng minh tổng quát. Những người cũng có cống hiến quan trọng: Cauchy; Dirichlet với cuốn Vorlesungen über Zahlentheorie kinh điển; Jacobi, người đã đưa ra ký hiệu Jacobi; Liouville, Zeller (?), Eisenstein, Kummer, và Kronecker. Lý thuyết này đã được mở rộng để bao gồm biquadratic reciprocity (Gauss, Jacobi những người đầu tiên chứng minh luật tương hỗ bậc ba, và Kummer).

Gauss cũng đã đưa ra biểu diễn các số thành các dạng bậc hai cơ số hai.

Lý thuyết số về số nguyên tố[sửa | sửa mã nguồn]

Một chủ đề lớn và lặp đi lặp lại trong lý thuyết số đó là nghiên cứu về sự phân bố số nguyên tố. Carl Fiedrich Gauss đã dự đoán kết quả của định lý số nguyên tố khi còn là học sinh trung học.

Chebyshev (1850) đưa ra các chặn cho số số nguyên tố giữa hai giới hạn cho trước. Riemann giới thiệu giải tích phức thành lý thuyết về hàm zeta Riemann. Điều này đã dẫn đến mối quan hệ giữa các số không của hàm zeta và sự phân bố số nguyên tố, thậm chí dẫn tới một chứng minh cho định lý số về số nguyên tố độc lập với Hadamard và de la Vallée Poussin vào năm 1896. Tuy nhiên, một chứng minh sơ cấp đã được đưa ra sau đó bởi Paul Erdős và Atle Selberg vào năm 1949. Ở đây sơ cấp nghĩa là không sử dụng kĩ thuật giải tích phức; tuy nhiên chứng minh vẫn rất đặc biệt và rất khó. Giả thuyết Riemann, đưa ra những thông tin chính xác hơn, vẫn còn là một câu hỏi mở.

Các thành tựu trong thế kỉ 19[sửa | sửa mã nguồn]

Cauchy, Pointsot (1845), Lebesgue (1859, 1868) và đặc biệt là Hermite đã có những cống hiến đối với lĩnh vực này. Trong lý thuyết về các ternary form Eisenstein đã trở thành người đi đầu, và với ông và H. J. S. Smith đó đúng là một bước tiến quan trọng trong lý thuyết về các dạng. Smith đã đưa ra một sự phân loại hoàn chỉnh về các ternary form bậc hai, và mở rộng những nghiên cứu của Gauss về các dạng bậc hai thực (real quadratic form) thành các dạng phức (complex form). Những nghiên cứu về biểu diễn các số thành tổng của 4, 5, 6, 6, 8 bình phương đã được phát triển bởi Eisenstein và lý thuyết này đã được hoàn chỉnh bởi Smith.

Dirichlet là người đầu tiên thuyết trình về lĩnh vực này ở một trường đại học ở Đức. Một trong những cống hiến của ông là sự mở rộng của Định lý lớn Fermat:

{\displaystyle x^{n}+y^{n}\neq z^{n},(x,y,z\neq 0,n>2)}📷

mà Euler và Legendre đã chứng minh cho n = 3, 4 (và từ đó suy ra cho các bội của 3 và 4). Dirichlet đã chỉ ra rằng:{\displaystyle x^{5}+y^{5}\neq az^{5}}📷. Một số nhà toán học Pháp là Borel, Poincaré, những hồi ký của họ rất lớn và có giá trị; Tannery và Stieltjes. Một số người có những cống hiến hàng đầu ở Đức là Kronecker, Kummer, Schering, Bachmann, và Dedekind. Ở Austria cuốn Vorlesungen über allgemeine Arithmetik của Stolz (1885-86) và ở Anh cuốn Lý thuyết số của Mathew (Phần I, 1892) là các công trình tổng quát rất có giá trị. Genocchi, Sylvester, và J. W. L. Glaisher cũng đã có những cống hiến cho lý thuyết này.

Các thành tựu trong thế kỉ 20[sửa | sửa mã nguồn]

Những nhà toán học lớn trong lý thuyết số thế kỉ 20 bao gồm Paul Erdős, Gerd Faltings, G. H. Hardy, Edmund Landau, John Edensor Littlewood, Srinivasa Ramanujan và André Weil.

Các cột mốc trong lý thuyết số thế kỉ 20 bao gồm việc chứng minh Định lý lớn Fermat bởi Andrew Wiles vào năm 1994 và chứng minh Giả thuyết Taniyama–Shimura vào năm 1999

Danh ngôn[sửa | sửa mã nguồn]

Toán học là nữ hoàng của các khoa học và lý thuyết số là nữ hoàng của toán học. — Gauss

Chúa sinh ra các số nguyên, và phần việc còn lại là của con người. — Kronecker

Tôi biết các con số rất đẹp đẽ. Nếu chúng không đẹp, thì chẳng có thứ gì đẹp.— Erdős

0