Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách lấy ra là:
\(C^1_3\cdot C^3_9+C^2_3\cdot C^2_9+C^3_3\cdot C^1_9=369\left(cách\right)\)
a: Số cách chọn là \(C^6_{16}=8008\left(cách\right)\)
b: Số cách chọn là \(C^2_4\cdot C^4_{12}=2970\left(cách\right)\)
c: SỐ cách chọn là \(C^6_9+C^6_{12}+C^6_{11}=1470\left(cách\right)\)
\(n\left(C\right)=C^2_6\cdot8\cdot10+C^2_8\cdot6\cdot10+C^2_{10}\cdot6\cdot8=5040\)
Giả sử trong 4 viên đó có 4 viên đỏ
=>Có \(C^4_6=15\)
=>\(n\left(\overline{A}\right)=15\)
\(n\left(\Omega\right)=C^4_{15}=1365\)
=>\(P_A=1-\dfrac{15}{1365}=\dfrac{90}{91}\)
Số cách để Hà chọn ra đúng 2 viên bi khác màu là: 5. 7 = 35 (cách)
Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega \right) = C_7^2.C_7^2 = 441\)
a) Biến cố “Bốn viên bi lấy ra có cùng màu” xảy ra khi mỗi lần lấy từ 2 hộp đều là hai viên bi xạnh hoặc hai viên bi đỏ. Số kết quả thuận lợi cho biến cố là \(C_4^2.C_5^2 + C_3^2.C_2^2 = 63\)
Vậy xác suất của biến cố “Bốn viên bi lấy ra có cùng màu” là \(P = \frac{{63}}{{441}} = \frac{1}{7}\)
b) Số kết quả thuận lợi cho biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là \(C_4^1.C_3^1.C_2^2 + C_3^2.C_5^1.C_2^1 = 42\)
Vậy xác suất của biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là: \(P = \frac{{42}}{{441}} = \frac{2}{{21}}\)
c) Gọi A là biến cố “Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ”, ta có biến cố đối là \(\overline A \): “4 viên bi lấy ra chỉ có một màu”
\(\overline A \) xảy ra khi 2 lần lấy ra đều được các viên bi cùng màu xanh hoặc cùng màu đỏ
Từ câu a) ta có xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{1}{7}\)
Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{7} = \frac{6}{7}\)
a: Số cách chọn là:
\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)
b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)
Số cách chọn 9 viên ko có đủ 3 màu là:
\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)
=>Có 4939 cách