Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Nhận xét:
Số dư của a khi chia cho 4 |
0 |
1 |
2 |
3 |
x |
6 |
8 |
4 |
2 |
x chia hết cho 4 khi a chia 4 dư 1 hoặc dư 2. Dãy các số chia 4 dư 1 là: 1; 5; 9; …; 97 (có 25 số); dãy các số chia 4 dư 2 là 2; 6; 10; …; 98 (có 25 số).
Xác suất cần tím là: 25 + 25 100 = 1 2 .
HD: Số phần tử của không gian mẫu là: Ω = C 11 4
Gọi A là biến cố: “Tổng số ghi trên 4 tấm thẻ ấy là một số lẻ”
Khi đó số tấm lẻ được chọn là số lẻ.
Trong 11 số từ 1 đến 11 có 6 số lẻ và 5 số chẵn.
Đáp án A
Tổng cả 4 tấm thẻ là 1 số lẻ khi
+) Có 1 thẻ là lẻ, 3 thẻ còn lại là chẵn, suy ra có C 6 1 C 5 3 = 60 cách chọn.
+) Có 3 thẻ là lẻ, 1 thẻ là chẵn, suy ra có C 5 1 C 6 3 = 100 cách chọn.
Suy ra P = 60 + 100 C 11 4 = 16 33
Chọn B.
Số cách rút hai thẻ chẵn là C 10 2 . Số cách rút ra hai thẻ trong đó có một thẻ ghi số chia hết cho 4 còn thẻ kia ghi số lẻ là .
Vậy xác suất cần tìm là C 5 1 C 5 2
Đáp án C
Trong 20 tấm thẻ có 10 tấm mang
số lẻ, có 5 tấm mang số chẵn không chia hết cho 4 và 5 tấm thẻ mang số chẵn
chia hết cho 4
TH1: Lấy được 5 tấm mang số lẻ, 2 tấm mang số chẵn chia hết cho 4 và tấm mang 1 số chẵn không chi hết cho 4 có
TH2: Lấy được 5 tấm mang số lẻ, 3 tấm mang số chẵn chia hết cho 4 có
Trong 20 tấm thẻ từ 1 đến 20 có 10 tấm thẻ mang số lẻ, 10 tấm thẻ mang số chẵn trong đó có 5 tấm thẻ chia hết cho 5. Gọi A là biến cố: " chọn có 3 tấm thẻ mang số lẻ, 2 tấm thẻ mang số chẵn trong đó có ít nhất một tấm thẻ mang số chia hết cho 4"
TH1: Chọn được 3 tấm thẻ mang số lẻ 1 tấm thẻ mang số chẵn chia hết cho 4 và một tấm chẵn mang số không chia hết cho 4 có:
TH2: Chọn được 3 tấm thẻ mang số lẻ và 2 tấm thẻ mang số chẵn và chia hết cho 4 có:
Chọn C.
Số phần tử của không gian mẫu là: n Ω = C 11 6 = 462
Gọi A là biến cố “ Chọn ngẫu nhiên 6 tấm thẻ để tổng ghi trên 6 tấm thẻ là một số lẻ”
Các kết quả thuận lợi cho biến cố A.
Lấy ra được 1 tấm thẻ lẻ và 5 tấm thẻ chẵn có C 6 1 . C 5 5
Lấy ra được 3 tấm thẻ lẻ và 3 tấm thẻ chẵn có C 6 3 . C 5 3
Lấy ra được 5 tấm thẻ lẻ và 1 tấm thẻ chẵn có C 6 5 . C 5 1
Chọn A.
Lấy ngẫu nhiên tấm thẻ từ 9 tấm thẻ có C 9 2 = 36 cách => số phần tử của không gian mẫu là n Ω = 36 .
Gọi A: “tích của hai số trên tấm thẻ là một số chẵn”.
Để tích của hai số trên tấm thẻ là một số chẵn thì ít nhất một trong hai tấm thẻ phải là số chẵn. Ta có hai trường hợp
TH1: Cả hai thẻ được lấy ra đều là số chẵn có C 4 2 = 6 cách.
Th2: Hai thẻ lấy ra có một thẻ là số chẵn, một thẻ là số lẻ C 4 1 . C 5 1 = 20 cách.
Số kết quả thuận lợi cho A là n(A) = 6 + 20 = 26.
Vậy xác suất của biến cố A là P A = n A n Ω = 13 18 .
Đáp án là D