Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2
Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2
suy ra 13 giao thừa - 11 giao thừa chia hết cho 2
xin các bạn k cho mình nhé
(Phải là toán lớp 9 nha bạn)
Do \(gcd\left(2003,51\right)=1\) nên theo định lí Euler ta có \(2003^{\phi\left(51\right)}-1⋮51\).
Tức là tồn tại số nguyên dương \(k\) thỏa đề.
P/S: \(\phi\left(51\right)=32\) nhưng số nguyên dương nhỏ nhất thỏa đề chỉ có \(16\) thôi.
a) Số số hạng từ 1 đến 2000 là :
( 2000 - 1 ) : 1 + 1 = 2000 ( số )
Tổng từ 1 đến 2000 là :
( 2000 + 1 ) x 2000 : 2 = 2001000
Vì 2001000 có tận cùng là 0 nên tổng chia hết cho 5
b) Số số hạng từ 1 đến 2001 là :
( 2001 - 1 ) : 1 + 1 = 2001 ( số )
Tổng từ 1 đến 2001 là :
( 2001 + 1 ) x 2001 : 2 = 2003001
Vì 2003001 có tận cùng là 1 nên không chia hết cho 2 mà 2003001 : 7 = 286143 nên tổng chia hết cho 7 tick đúng nha ha quang dung
không có
không có